IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v347y2025i2d10.1007_s10479-024-06226-8.html
   My bibliography  Save this article

Leveraging interpretable machine learning in intensive care

Author

Listed:
  • Lasse Bohlen

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Julian Rosenberger

    (Universität Regensburg)

  • Patrick Zschech

    (Universität Leipzig)

  • Mathias Kraus

    (Universität Regensburg)

Abstract

In healthcare, especially within intensive care units (ICU), informed decision-making by medical professionals is crucial due to the complexity of medical data. Healthcare analytics seeks to support these decisions by generating accurate predictions through advanced machine learning (ML) models, such as boosted decision trees and random forests. While these models frequently exhibit accurate predictions across various medical tasks, they often lack interpretability. To address this challenge, researchers have developed interpretable ML models that balance accuracy and interpretability. In this study, we evaluate the performance gap between interpretable and black-box models in two healthcare prediction tasks, mortality and length-of-stay prediction in ICU settings. We focus specifically on the family of generalized additive models (GAMs) as powerful interpretable ML models. Our assessment uses the publicly available Medical Information Mart for Intensive Care dataset, and we analyze the models based on (i) predictive performance, (ii) the influence of compact feature sets (i.e., only few features) on predictive performance, and (iii) interpretability and consistency with medical knowledge. Our results show that interpretable models achieve competitive performance, with a minor decrease of 0.2–0.9 percentage points in area under the receiver operating characteristic relative to state-of-the-art black-box models, while preserving complete interpretability. This remains true even for parsimonious models that use only 2.2 % of patient features. Our study highlights the potential of interpretable models to improve decision-making in ICUs by providing medical professionals with easily understandable and verifiable predictions.

Suggested Citation

  • Lasse Bohlen & Julian Rosenberger & Patrick Zschech & Mathias Kraus, 2025. "Leveraging interpretable machine learning in intensive care," Annals of Operations Research, Springer, vol. 347(2), pages 1093-1132, April.
  • Handle: RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-024-06226-8
    DOI: 10.1007/s10479-024-06226-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06226-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06226-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:347:y:2025:i:2:d:10.1007_s10479-024-06226-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.