Causal inference in AI education: A primer
Author
Abstract
Suggested Citation
DOI: 10.1515/jci-2021-0048
Download full text from publisher
References listed on IDEAS
- Joan Garfield & Dani Ben‐Zvi, 2007. "How Students Learn Statistics Revisited: A Current Review of Research on Teaching and Learning Statistics," International Statistical Review, International Statistical Institute, vol. 75(3), pages 372-396, December.
- Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Publisher Correction: Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
- Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(1), pages 152-179, February.
- Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Alexander Lavin & Ciarán M. Gilligan-Lee & Alessya Visnjic & Siddha Ganju & Dava Newman & Sujoy Ganguly & Danny Lange & Atílím Güneş Baydin & Amit Sharma & Adam Gibson & Stephan Zheng & Eric P. Xing &, 2022. "Technology readiness levels for machine learning systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Katerina Rigana & Ernst C. Wit & Samantha Cook, 2024. "Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk," Papers 2402.06032, arXiv.org.
- Shilin Zheng & Mengdan Li, 2022. "Does aggressive tweeting by the government help to control the COVID‐19 outbreak? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(4), pages 691-713, October.
- Elisa Ferrari & Luna Gargani & Greta Barbieri & Lorenzo Ghiadoni & Francesco Faita & Davide Bacciu, 2022. "A causal learning framework for the analysis and interpretation of COVID-19 clinical data," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-21, May.
- Raafat M Munshi, 2024. "Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-20, January.
- Lasse Bohlen & Julian Rosenberger & Patrick Zschech & Mathias Kraus, 2025. "Leveraging interpretable machine learning in intensive care," Annals of Operations Research, Springer, vol. 347(2), pages 1093-1132, April.
- Tapia, Jose, 2015.
"Profits encourage investment, investment dampens profits, government spending does not prime the pump — A DAG investigation of business-cycle dynamics,"
MPRA Paper
64698, University Library of Munich, Germany.
- Tapia, Jose, 2015. "Profits encourage investment, investment dampens profits, government spending does not prime the pump — A DAG investigation of business-cycle dynamics," MPRA Paper 64985, University Library of Munich, Germany, revised Jun 2015.
- Andreea Cujba & Manoli Pifarré, 2024. "Enhancing students’ attitudes towards statistics through innovative technology-enhanced, collaborative, and data-driven project-based learning," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Peter Hull & Michal Kolesár & Christopher Walters, 2022.
"Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens,"
Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
- Peter Hull & Michal Koles'ar & Christopher Walters, 2022. "Labour by Design: Contributions of David Card, Joshua Angrist, and Guido Imbens," Papers 2203.16405, arXiv.org.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Stephen F. LeRoy, 2018. "Implementation-Neutral Causation in Structural Models," Contemporary Economics, Vizja University, vol. 12(3), September.
- Robert Gould, 2010. "Statistics and the Modern Student," International Statistical Review, International Statistical Institute, vol. 78(2), pages 297-315, August.
- Peter Petocz & Anna Reid, 2010. "On Becoming a Statistician—A Qualitative View," International Statistical Review, International Statistical Institute, vol. 78(2), pages 271-286, August.
- Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
- Nikolay Arefiev & Ramis Khabibullin, 2018. "Bayesian identification of structural vector autoregression models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 49, pages 115-142.
- Ángel Peiró-Signes & Óscar Trull & Marival Segarra-Oña & J. Carlos García-Díaz, 2020. "Attitudes Towards Statistics in Secondary Education: Findings from fsQCA," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
- Constance H. McLaren & Bruce J. McLaren, 2014. "Possible or Probable? An Experiential Approach to Probability Literacy," INFORMS Transactions on Education, INFORMS, vol. 14(3), pages 129-136, May.
- Heejoo Suh & Sohyung Kim & Seonyoung Hwang & Sunyoung Han, 2020. "Enhancing Preservice Teachers’ Key Competencies for Promoting Sustainability in a University Statistics Course," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:10:y:2022:i:1:p:141-173:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.