IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291138.html
   My bibliography  Save this article

Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil

Author

Listed:
  • Gilberto Nerino de Souza Jr
  • Alícia Graziella Balbino Mendes
  • Joaquim dos Santos Costa
  • Mikeias dos Santos Oliveira
  • Paulo Victor Cunha Lima
  • Vitor Nunes de Moraes
  • David Costa Correia Silva
  • Jonas Elias Castro da Rocha
  • Marcel do Nascimento Botelho
  • Fabricio Almeida Araujo
  • Rafael da Silva Fernandes
  • Daniel Leal Souza
  • Marcus de Barros Braga

Abstract

Modeling time series has been a particularly challenging aspect due to the need for constant adjustments in a rapidly changing environment, data uncertainty, dependencies between variables, volatile fluctuations, and the need to identify ideal hyperparameters. The present study presents a Framework capable of making projections from time series related to cases and deaths by COVID-19 in the Amazonian state of Pará, in Brazil. For the first time, deep learning models such as TCN, TRANSFORMER, TFT, N-BEATS, and N-HiTS were assessed for this purpose. The ARIMA statistical model was also used in post-processing for residual adjustment and short-term smoothing of the generated forecasts. The Framework generates probabilistic forecasts, with multivariate support, considering the following variables: daily cases per day of the first symptom, cases published daily, the occurrence of deaths, deaths published daily, and percentage of daily vaccination. The generated predictions are statistically evaluated by determining the best model for 7-day moving average projections using evaluating metrics such as MSE, RMSE, MAPE, sMAPE, r2, Coefficient of Variation, and residual analysis. As a result, the generated projections showed an average error of 5.4% for Cases Publication, 8.0% for Cases Symptoms, 11.12% for Deaths Publication, and 4.6% for Deaths Occurrence, with the N-HiTS and N-BEATS models obtaining better results. In general terms, the use of deep learning models to predict cases and deaths from COVID-19 has proven to be a valuable practice for analyzing the spread of the virus, which allows health managers to better understand and respond to this kind of pandemic outbreak.

Suggested Citation

  • Gilberto Nerino de Souza Jr & Alícia Graziella Balbino Mendes & Joaquim dos Santos Costa & Mikeias dos Santos Oliveira & Paulo Victor Cunha Lima & Vitor Nunes de Moraes & David Costa Correia Silva & J, 2023. "Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-31, November.
  • Handle: RePEc:plo:pone00:0291138
    DOI: 10.1371/journal.pone.0291138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291138
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    5. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    6. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    7. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    8. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    9. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    10. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    13. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    14. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720.
    15. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    16. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    17. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    18. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    19. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    20. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.