IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291138.html
   My bibliography  Save this article

Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil

Author

Listed:
  • Gilberto Nerino de Souza Jr
  • Alícia Graziella Balbino Mendes
  • Joaquim dos Santos Costa
  • Mikeias dos Santos Oliveira
  • Paulo Victor Cunha Lima
  • Vitor Nunes de Moraes
  • David Costa Correia Silva
  • Jonas Elias Castro da Rocha
  • Marcel do Nascimento Botelho
  • Fabricio Almeida Araujo
  • Rafael da Silva Fernandes
  • Daniel Leal Souza
  • Marcus de Barros Braga

Abstract

Modeling time series has been a particularly challenging aspect due to the need for constant adjustments in a rapidly changing environment, data uncertainty, dependencies between variables, volatile fluctuations, and the need to identify ideal hyperparameters. The present study presents a Framework capable of making projections from time series related to cases and deaths by COVID-19 in the Amazonian state of Pará, in Brazil. For the first time, deep learning models such as TCN, TRANSFORMER, TFT, N-BEATS, and N-HiTS were assessed for this purpose. The ARIMA statistical model was also used in post-processing for residual adjustment and short-term smoothing of the generated forecasts. The Framework generates probabilistic forecasts, with multivariate support, considering the following variables: daily cases per day of the first symptom, cases published daily, the occurrence of deaths, deaths published daily, and percentage of daily vaccination. The generated predictions are statistically evaluated by determining the best model for 7-day moving average projections using evaluating metrics such as MSE, RMSE, MAPE, sMAPE, r2, Coefficient of Variation, and residual analysis. As a result, the generated projections showed an average error of 5.4% for Cases Publication, 8.0% for Cases Symptoms, 11.12% for Deaths Publication, and 4.6% for Deaths Occurrence, with the N-HiTS and N-BEATS models obtaining better results. In general terms, the use of deep learning models to predict cases and deaths from COVID-19 has proven to be a valuable practice for analyzing the spread of the virus, which allows health managers to better understand and respond to this kind of pandemic outbreak.

Suggested Citation

  • Gilberto Nerino de Souza Jr & Alícia Graziella Balbino Mendes & Joaquim dos Santos Costa & Mikeias dos Santos Oliveira & Paulo Victor Cunha Lima & Vitor Nunes de Moraes & David Costa Correia Silva & J, 2023. "Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-31, November.
  • Handle: RePEc:plo:pone00:0291138
    DOI: 10.1371/journal.pone.0291138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291138
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    5. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    6. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    7. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    8. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    11. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
    12. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    13. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    14. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    15. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    16. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    17. Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Risks, MDPI, vol. 6(1), pages 1-20, March.
    18. Manuela Royer-Carenzi & Hossein Hassani, 2025. "Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling," Stats, MDPI, vol. 8(1), pages 1-37, February.
    19. Svitlana Galeshchuk, 2017. "Technological bias at the exchange rate market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 80-86, April.
    20. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.