IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0289348.html
   My bibliography  Save this article

Comparison of the data mining and machine learning algorithms for predicting the final body weight for Romane sheep breed

Author

Listed:
  • Cem Tırınk
  • Hasan Önder
  • Dominique Francois
  • Didier Marcon
  • Uğur Şen
  • Kymbat Shaikenova
  • Karlygash Omarova
  • Thobela Louis Tyasi

Abstract

The current study aimed to predict final body weight (weight of fourth months of age to select the future reproducers) by using birth weight, birth type, sex, suckling weight, age at suckling weight, weaning weight, age at weaning weight, and age of final body weight for the Romane sheep breed. For this purpose, classification and regression tree (CART), multivariate adaptive regression splines (MARS), and support vector machine regression (SVR) algorithms were used for training (80%) and testing (20%) sets. Different data mining and machine learning algorithms were used to predict final body weight of 393 Romane sheep (238 female and 155 male animals) were used with different artificial intelligence algorithms. The best prediction model was obtained by CART model, both training and testing set. Constructed CART models indicated that sex, suckling weight, weaning weight, age of weaning weight, and age of final weight could be used as an indirect selection measure to get a superior sheep flock on the final body weight of Romane sheep. If genetically established, the Romane sheep whose sex is female, age of final weight is over 142 days, and weaning weight is over 28 kg could be chosen for affording genetic improvement in final body weight. In conclusion, the usage of CART procedure may be worthy of reflection for identifying breed standards and choosing superior sheep for meat yield in France.

Suggested Citation

  • Cem Tırınk & Hasan Önder & Dominique Francois & Didier Marcon & Uğur Şen & Kymbat Shaikenova & Karlygash Omarova & Thobela Louis Tyasi, 2023. "Comparison of the data mining and machine learning algorithms for predicting the final body weight for Romane sheep breed," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0289348
    DOI: 10.1371/journal.pone.0289348
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289348
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289348&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0289348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kavaklioglu, Kadir, 2011. "Modeling and prediction of Turkey's electricity consumption using Support Vector Regression," Applied Energy, Elsevier, vol. 88(1), pages 368-375, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Wu Zhou & Chuanying Chen & Yuanguang Zhong & Bin Cao, 2020. "The allocation optimization of promotion budget and traffic volume for an online flash-sales platform," Annals of Operations Research, Springer, vol. 291(1), pages 1183-1207, August.
    2. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    3. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.
    4. Singh, Sanjeet & Bansal, Pooja & Hosen, Mosharrof & Bansal, Sanjeev K., 2023. "Forecasting annual natural gas consumption in USA: Application of machine learning techniques- ANN and SVM," Resources Policy, Elsevier, vol. 80(C).
    5. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    6. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    7. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    8. Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
    9. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
    10. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
    11. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    12. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    13. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    14. Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
    15. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    16. Liu, Yuan & Wang, RuiXue, 2016. "Study on network traffic forecast model of SVR optimized by GAFSA," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 153-159.
    17. Weide Li & Demeng Kong & Jinran Wu, 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(5), pages 1-16, May.
    18. Bachici Miroslav-Andrei & Gellert Arpad, 2020. "Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks," International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, Sciendo, vol. 10(1), pages 80-89, December.
    19. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    20. Kuangyu Wen & Wenbin Wu & Ximing Wu, 2023. "Electricity demand forecasting and risk management using Gaussian process model with error propagation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 957-969, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.