IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0288296.html
   My bibliography  Save this article

CLPREM: A real-time traffic prediction method for 5G mobile network

Author

Listed:
  • Xiaorui Wu
  • Chunling Wu

Abstract

Network traffic prediction is an important network monitoring method, which is widely used in network resource optimization and anomaly detection. However, with the increasing scale of networks and the rapid development of 5-th generation mobile networks (5G), traditional traffic forecasting methods are no longer applicable. To solve this problem, this paper applies Long Short-Term Memory (LSTM) network, data augmentation, clustering algorithm, model compression, and other technologies, and proposes a Cluster-based Lightweight PREdiction Model (CLPREM), a method for real-time traffic prediction of 5G mobile networks. We have designed unique data processing and classification methods to make CLPREM more robust than traditional neural network models. To demonstrate the effectiveness of the method, we designed and conducted experiments in a variety of settings. Experimental results confirm that CLPREM can obtain higher accuracy than traditional prediction schemes with less time cost. To address the occasional anomaly prediction issue in CLPREM, we propose a preprocessing method that minimally impacts time overhead. This approach not only enhances the accuracy of CLPREM but also effectively resolves the real-time traffic prediction challenge in 5G mobile networks.

Suggested Citation

  • Xiaorui Wu & Chunling Wu, 2024. "CLPREM: A real-time traffic prediction method for 5G mobile network," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-27, April.
  • Handle: RePEc:plo:pone00:0288296
    DOI: 10.1371/journal.pone.0288296
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288296
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288296&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0288296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. You-Shyang Chen & Arun Kumar Sangaiah & Yu-Pei Lin, 2024. "Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management," Annals of Operations Research, Springer, vol. 342(1), pages 215-264, November.
    3. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    4. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    5. Marco Zanotti, 2025. "Do global forecasting models require frequent retraining?," Working Papers 551, University of Milano-Bicocca, Department of Economics.
    6. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
    7. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    8. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    9. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    10. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    11. Shanthi Saubhagya & Chandima Tilakaratne & Pemantha Lakraj & Musa Mammadov, 2025. "A Fusion of Deep Learning and Time Series Regression for Flood Forecasting: An Application to the Ratnapura Area Based on the Kalu River Basin in Sri Lanka," Forecasting, MDPI, vol. 7(2), pages 1-24, June.
    12. Wookjae Heo & Eunchan Kim, 2025. "Smoothing the Subjective Financial Risk Tolerance: Volatility and Market Implications," Mathematics, MDPI, vol. 13(4), pages 1-34, February.
    13. Ioannis Paraskevopoulos & Alvaro Santos, 2025. "The Stochastic Evolution of Financial Asset Prices," Mathematics, MDPI, vol. 13(12), pages 1-24, June.
    14. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    15. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    16. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    17. Paweł Pełka, 2023. "Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods," Energies, MDPI, vol. 16(2), pages 1-22, January.
    18. Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
    19. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    20. Wenhui Zhao & Tong Li & Danyang Xu & Zhaohua Wang, 2024. "A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model," Annals of Operations Research, Springer, vol. 339(1), pages 227-259, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.