A Fusion of Deep Learning and Time Series Regression for Flood Forecasting: An Application to the Ratnapura Area Based on the Kalu River Basin in Sri Lanka
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Shanthi Saubhagya & Chandima Tilakaratne & Pemantha Lakraj & Musa Mammadov, 2024. "Granger Causality-Based Forecasting Model for Rainfall at Ratnapura Area, Sri Lanka: A Deep Learning Approach," Forecasting, MDPI, vol. 6(4), pages 1-28, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saeed Alqadhi & Javed Mallick & Meshel Alkahtani & Intikhab Ahmad & Dhafer Alqahtani & Hoang Thi Hang, 2024. "Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3719-3747, March.
- Vuong, Van-Dai & Nguyen, Luong-Ha & Goulet, James-A., 2025. "Coupling LSTM neural networks and state-space models through analytically tractable inference," International Journal of Forecasting, Elsevier, vol. 41(1), pages 128-140.
- Marco Zanotti, 2025. "On the stability of global forecasting models," Working Papers 553, University of Milano-Bicocca, Department of Economics.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Tuominen, Jalmari & Pulkkinen, Eetu & Peltonen, Jaakko & Kanniainen, Juho & Oksala, Niku & Palomäki, Ari & Roine, Antti, 2024. "Forecasting emergency department occupancy with advanced machine learning models and multivariable input," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1410-1420.
- Xuemin Huang & Xiaoliang Zhuang & Fangyuan Tian & Zheng Niu & Yujie Chen & Qian Zhou & Chao Yuan, 2025. "A Hybrid ARIMA-LSTM-XGBoost Model with Linear Regression Stacking for Transformer Oil Temperature Prediction," Energies, MDPI, vol. 18(6), pages 1-22, March.
- Ahmad El Majzoub & Fethi A. Rabhi & Walayat Hussain, 2023. "Evaluating interpretable machine learning predictions for cryptocurrencies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(3), pages 137-149, July.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Oikonomou, Konstantinos & Damigos, Dimitris & Dimitriou, Dimitrios, 2025. "Globality in the metal markets: Leveraging cross-learning to forecast aluminum and copper prices," Resources Policy, Elsevier, vol. 103(C).
- Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
- Zhang, Hanyu & Zandehshahvar, Reza & Tanneau, Mathieu & Van Hentenryck, Pascal, 2025. "Weather-informed probabilistic forecasting and scenario generation in power systems," Applied Energy, Elsevier, vol. 384(C).
- Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Yanqian Li & Yanlai Zhou & Yuxuan Luo & Zhihao Ning & Chong-Yu Xu, 2024. "Boosting the Development and Management of Wind Energy: Self-Organizing Map Neural Networks for Clustering Wind Power Outputs," Energies, MDPI, vol. 17(21), pages 1-15, November.
- Wael Almikaeel & Andrej Šoltész & Lea Čubanová & Dana Baroková, 2025. "Hydro-informer: a deep learning model for accurate water level and flood predictions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 3959-3979, March.
- Jingrui Liu & Zhiwen Hou & Bowei Liu & Xinhui Zhou, 2025. "Mathematical and Machine Learning Innovations for Power Systems: Predicting Transformer Oil Temperature with Beluga Whale Optimization-Based Hybrid Neural Networks," Mathematics, MDPI, vol. 13(11), pages 1-34, May.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Mo, Jixian & Gao, Ruobin & Fai Yuen, Kum & Bai, Xiwen, 2024. "Predictive analysis of sell-and-purchase shipping market: A PIMSE approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:29-:d:1681948. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i2p29-d1681948.html