IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287423.html
   My bibliography  Save this article

Spatial and temporal characteristics analysis and prediction model of PM2.5 concentration based on SpatioTemporal-Informer model

Author

Listed:
  • Zhanfei Ma
  • Wenli Luo
  • Jing Jiang
  • Bisheng Wang
  • Ziyuan Ma
  • Jixiang Lin
  • Dongxiang Liu

Abstract

The primary cause of hazy weather is PM2.5, and forecasting PM2.5 concentrations can aid in managing and preventing hazy weather. This paper proposes a novel spatiotemporal prediction model called SpatioTemporal-Informer (ST-Informer) in response to the shortcomings of spatiotemporal prediction models commonly used in studies for long-input series prediction. The ST-Informer model implements parallel computation of long correlations and adds an independent spatiotemporal embedding layer to the original Informer model. The spatiotemporal embedding layer captures the complex dynamic spatiotemporal correlations among the input information. In addition, the ProbSpare Self-Attention mechanism in this model can focus on extracting important contextual information of spatiotemporal data. The ST-Informer model uses weather and air pollutant concentration data from numerous stations as its input data. The outcomes of the trials indicate that (1) The ST-Informer model can sharply capture the peaks and sudden changes in PM2.5 concentrations. (2) Compared to the current models, the ST-Informer model shows better prediction performance while maintaining high-efficiency prediction (MAE≈7.50μg/m3,RMSE≈4.31μg/m3,R2≈0.88). (3) The ST-Informer model has universal applicability, and the model was applied to the concentration of other pollutants prediction with good results.

Suggested Citation

  • Zhanfei Ma & Wenli Luo & Jing Jiang & Bisheng Wang & Ziyuan Ma & Jixiang Lin & Dongxiang Liu, 2023. "Spatial and temporal characteristics analysis and prediction model of PM2.5 concentration based on SpatioTemporal-Informer model," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0287423
    DOI: 10.1371/journal.pone.0287423
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287423
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287423&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    2. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    2. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
    5. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    6. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    7. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    8. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    9. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    10. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    11. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    12. Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).
    13. Li, Tailu & Zhang, Yao & Wang, Jingyi & Jin, Fengyun & Gao, Ruizhao, 2024. "Techno-economic and environmental performance of a novel thermal station characterized by electric power generation recovery as by-product," Renewable Energy, Elsevier, vol. 221(C).
    14. Min Cao & Jinfeng Wang & Xiaochen Sun & Zhengmou Ren & Haokai Chai & Jie Yan & Ning Li, 2022. "Short-Term and Medium-Term Electricity Sales Forecasting Method Based on Deep Spatio-Temporal Residual Network," Energies, MDPI, vol. 15(23), pages 1-15, November.
    15. Zhou, Gaoyu & Hu, Guofeng & Zhang, Daxing & Zhang, Yun, 2023. "A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model," Energy, Elsevier, vol. 283(C).
    16. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    17. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    18. Al-qaness, Mohammed A.A. & Ewees, Ahmed A. & Fan, Hong & Abualigah, Laith & Elaziz, Mohamed Abd, 2022. "Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting," Applied Energy, Elsevier, vol. 314(C).
    19. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
    20. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.