Feature selection in wind speed forecasting systems based on meta-heuristic optimization
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0278491
Download full text from publisher
References listed on IDEAS
- Branko Kosovic & Sue Ellen Haupt & Daniel Adriaansen & Stefano Alessandrini & Gerry Wiener & Luca Delle Monache & Yubao Liu & Seth Linden & Tara Jensen & William Cheng & Marcia Politovich & Paul Prest, 2020. "A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction," Energies, MDPI, vol. 13(6), pages 1-16, March.
- Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
- Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information," Renewable Energy, Elsevier, vol. 75(C), pages 301-307.
- Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Kübra Tümay Ateş, 2023. "Estimation of Short-Term Power of Wind Turbines Using Artificial Neural Network (ANN) and Swarm Intelligence," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
- Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
- Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
- Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
- Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Ola G. El‐Taliawi & Nihit Goyal & Michael Howlett, 2021. "Holding out the promise of Lasswell's dream: Big data analytics in public policy research and teaching," Review of Policy Research, Policy Studies Organization, vol. 38(6), pages 640-660, November.
- Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
- Kyriakos Skarlatos & Eleni S. Bekri & Dimitrios Georgakellos & Polychronis Economou & Sotirios Bersimis, 2023. "Projecting Annual Rainfall Timeseries Using Machine Learning Techniques," Energies, MDPI, vol. 16(3), pages 1-20, February.
- Christy Pérez-Albornoz & Ángel Hernández-Gómez & Victor Ramirez & Damien Guilbert, 2023. "Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method," Clean Technol., MDPI, vol. 5(2), pages 1-22, June.
- Lu, Peng & Ye, Lin & Tang, Yong & Zhao, Yongning & Zhong, Wuzhi & Qu, Ying & Zhai, Bingxu, 2021. "Ultra-short-term combined prediction approach based on kernel function switch mechanism," Renewable Energy, Elsevier, vol. 164(C), pages 842-866.
- Weian Guo & Lei Zhu & Lei Wang & Qidi Wu & Fanrong Kong, 2019. "An Entropy-Assisted Particle Swarm Optimizer for Large-Scale Optimization Problem," Mathematics, MDPI, vol. 7(5), pages 1-12, May.
- Dimitris Katsaprakakis & Nikolaos Ch. Papadakis & Nikos Savvakis & Andreas Vavvos & Eirini Dakanali & Sofia Yfanti & Constantinos Condaxakis, 2025. "The Wind Parks Distorted Development in Greek Islands—Lessons Learned and Proposals Toward Rational Planning," Energies, MDPI, vol. 18(13), pages 1-34, June.
- Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.
- Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278491. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.