IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277768.html
   My bibliography  Save this article

Solar cell cracks within a photovoltaic module: Characterization by AC impedance spectroscopy

Author

Listed:
  • Tadanori Tanahashi
  • Shu-Tsung Hsu

Abstract

Various cell crack modes (with or without electrically inactive cell areas) can be induced in crystalline silicon photovoltaic (PV) cells within a PV module through natural thermomechanical stressors such as strong winds, heavy snow, and large hailstones. Although degradation in the performance of PV modules by cell cracks has been reported occasionally, the mode-dependent evolutions in the electrical signatures of cracks have not yet been elucidated. In this study, we propose that the reduction of the time constant in the AC impedance spectra, which is caused by the elevation of minority-carrier recombination in the p–n junction of a PV cell, is a ubiquitous signature of cracked PV cells encapsulated in a commercially available PV module. Several other characteristics derived from the illuminated current-voltage (I–V) and dark I–V data significantly evolved only in PV cells with inactive cell areas. We also propose that the evaluation by carrier recombination is a crucial diagnostic technique for detecting all crack modes, including microcracks, in wafer-based PV modules.

Suggested Citation

  • Tadanori Tanahashi & Shu-Tsung Hsu, 2022. "Solar cell cracks within a photovoltaic module: Characterization by AC impedance spectroscopy," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-25, November.
  • Handle: RePEc:plo:pone00:0277768
    DOI: 10.1371/journal.pone.0277768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277768
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dhimish, Mahmoud, 2020. "Micro cracks distribution and power degradation of polycrystalline solar cells wafer: Observations constructed from the analysis of 4000 samples," Renewable Energy, Elsevier, vol. 145(C), pages 466-477.
    2. Georgios Goudelis & Pavlos I. Lazaridis & Mahmoud Dhimish, 2022. "A Review of Models for Photovoltaic Crack and Hotspot Prediction," Energies, MDPI, vol. 15(12), pages 1-24, June.
    3. Koester, L. & Lindig, S. & Louwen, A. & Astigarraga, A. & Manzolini, G. & Moser, D., 2022. "Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
    5. Papargyri, Lamprini & Theristis, Marios & Kubicek, Bernhard & Krametz, Thomas & Mayr, Christoph & Papanastasiou, Panos & Georghiou, George E., 2020. "Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: A review," Renewable Energy, Elsevier, vol. 145(C), pages 2387-2408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Dhimish, Mahmoud & Ahmad, Ameer & Tyrrell, Andy M., 2022. "Inequalities in photovoltaics modules reliability: From packaging to PV installation site," Renewable Energy, Elsevier, vol. 192(C), pages 805-814.
    3. Mathhar Bdour & Zakariya Dalala & Mohammad Al-Addous & Ashraf Radaideh & Aseel Al-Sadi, 2020. "A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    4. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    5. Somin Park & Younghyun Cho & Seulki Kim & Koo Lee & Junsin Yi, 2022. "Effect of Cell Electrical Mismatch on Output of Crystalline Photovoltaic Modules," Energies, MDPI, vol. 15(19), pages 1-21, October.
    6. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    7. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    8. Chang, Zhonghao & Han, Te, 2024. "Prognostics and health management of photovoltaic systems based on deep learning: A state-of-the-art review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    9. Papargyri, Lamprini & Papanastasiou, Panos & Georghiou, George E., 2022. "Effect of materials and design on PV cracking under mechanical loading," Renewable Energy, Elsevier, vol. 199(C), pages 433-444.
    10. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    11. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    12. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    13. Hassan, Sharmarke & Dhimish, Mahmoud, 2023. "Enhancing solar photovoltaic modules quality assurance through convolutional neural network-aided automated defect detection," Renewable Energy, Elsevier, vol. 219(P1).
    14. Veljanovski, N. & ÄŒepin, M., 2024. "Event tree-based risk and financial assessment for power plants," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Zhang, Jinxia & Chen, Xinyi & Wei, Haikun & Zhang, Kanjian, 2024. "A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation," Applied Energy, Elsevier, vol. 355(C).
    16. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Chaib, Messaouda & Benatiallah, Ali & Dahbi, Abdeldjalil & Hachemi, Nadir & Baira, Fayçal & Boublia, Abir & Ernst, Barbara & Alam, Manawwer & Benguerba, Yacine, 2024. "Long-term performance analysis of a large-scale photoVoltaic plant in extreme desert conditions," Renewable Energy, Elsevier, vol. 236(C).
    18. Mahmoud Dhimish, 2020. "Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland," Clean Technol., MDPI, vol. 2(2), pages 1-14, May.
    19. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    20. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.