IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271883.html
   My bibliography  Save this article

Determinant factors of leprosy-related disability; comparison of acceleration failure time and parametric shared frailty models

Author

Listed:
  • Bezanesh Melese Masresha
  • Kasim Mohammed Yesuf
  • Yikeber Abebaw Moyehodie
  • Hailegebrael Birhan Biresaw
  • Solomon Sisay Mulugeta
  • Gedam Derbew Addisia

Abstract

Background: Leprosy is an illness persisting for a long time or constantly recurring brought about by Mycobacterium leprae. The collusion of the causing agent with Schwann cells leads to incapable of being changed loss of fringe nerve tissue; followed by incapacity and that is not restricted to actual powerlessness yet additionally makes a negative picture, prompting segregation and social disgrace against the altered people also, their families. Methods: The analysis of this study comprises 205 samples of patients at All African TB and Leprosy Rehabilitation and Training Centre from January 2015 up to December 2019 G.C who were taking medication for leprosy and who possess all necessary data. Territorial conditions in the region of the patients were utilized as a clustering impact in all frailty models. Acceleration failure time models and parametric shared frailty models with Weibull and log-strategic patterns were utilized to dissect hazard factors related to disability ensued by leprosy. All fitted models were looked at by utilizing AIC. Results: From that of 205, 69(33.7%) experienced at least one kind of disability grade during treatment taking. In light of AIC, log-logistic-gamma shared frailty model was the final best fitting model and also there was considerable variation among patients. The final model showed the age of patients, symptom duration, treatment category of patients, and sensory loss were found to be the most significant determinants of leprosy disability. Conclusion: In this investigation, there is proof of heterogeneity at the group level and disability was related to the age of patients, symptom duration, treatment category of patient, what’s more, sensory loss subsequently, uncommon consideration ought to be given to these huge indicators, which eventually diminish the event of disability. To lessen the patient-related postponement, the program should lay more noteworthy accentuation on bringing issues to light in the local area by zeroing in on key messages like indications, inability result of the late discovery, accessibility of free treatment what’s more, accessibility of disease care in general wellbeing office.

Suggested Citation

  • Bezanesh Melese Masresha & Kasim Mohammed Yesuf & Yikeber Abebaw Moyehodie & Hailegebrael Birhan Biresaw & Solomon Sisay Mulugeta & Gedam Derbew Addisia, 2023. "Determinant factors of leprosy-related disability; comparison of acceleration failure time and parametric shared frailty models," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-26, April.
  • Handle: RePEc:plo:pone00:0271883
    DOI: 10.1371/journal.pone.0271883
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271883
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271883&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kadane, Joseph B. & Lazar, Nicole A., 2004. "Methods and Criteria for Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 279-290, January.
    2. Klara Goethals & Paul Janssen & Luc Duchateau, 2008. "Frailty models and copulas: similarities and differences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1071-1079.
    3. Jason P. Fine & David V. Glidden & Kristine E. Lee, 2003. "A simple estimator for a shared frailty regression model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 317-329, February.
    4. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    5. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Rondeau, Virginie & Marzroui, Yassin & Gonzalez, Juan R., 2012. "frailtypack: An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i04).
    7. repec:plo:pntd00:0007495 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    2. Wagner Barreto-Souza & Vinícius Diniz Mayrink, 2019. "Semiparametric generalized exponential frailty model for clustered survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 679-701, June.
    3. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    4. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    5. Kenneth Harttgen & Stefan Lang & Johannes Seiler, 2017. "Selective mortality and undernutrition in low- and middle-income countries," Working Papers 2017-27, Faculty of Economics and Statistics, Universität Innsbruck, revised Aug 2018.
    6. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    7. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    9. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    10. Harttgen, Kenneth & Lang, Stefan & Seiler, Johannes, 2019. "Selective mortality and the anthropometric status of children in low- and middle-income countries," Economics & Human Biology, Elsevier, vol. 34(C), pages 257-273.
    11. Jennifer Oser & Marc Hooghe & Zsuzsa Bakk & Roberto Mari, 2023. "Changing citizenship norms among adolescents, 1999-2009-2016: A two-step latent class approach with measurement equivalence testing," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4915-4933, October.
    12. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    13. repec:col:000382:017172 is not listed on IDEAS
    14. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    15. Kukkonen, Markus O. & Muhammad, Muhammad J. & Käyhkö, Niina & Luoto, Miska, 2018. "Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches," Land Use Policy, Elsevier, vol. 71(C), pages 554-565.
    16. David D. Hanagal, 2022. "Correlated Positive Stable Frailty Models Based on Reversed Hazard Rate," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 42-65, April.
    17. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    18. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    19. Ward, Eric J., 2008. "A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools," Ecological Modelling, Elsevier, vol. 211(1), pages 1-10.
    20. Andreas Groll & Gerhard Tutz, 2017. "Variable selection in discrete survival models including heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 305-338, April.
    21. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.