IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v22y2016i3d10.1007_s10985-015-9337-9.html
   My bibliography  Save this article

Integrated likelihoods in parametric survival models for highly clustered censored data

Author

Listed:
  • Giuliana Cortese

    (University of Padova)

  • Nicola Sartori

    (University of Padova)

Abstract

In studies that involve censored time-to-event data, stratification is frequently encountered due to different reasons, such as stratified sampling or model adjustment due to violation of model assumptions. Often, the main interest is not in the clustering variables, and the cluster-related parameters are treated as nuisance. When inference is about a parameter of interest in presence of many nuisance parameters, standard likelihood methods often perform very poorly and may lead to severe bias. This problem is particularly evident in models for clustered data with cluster-specific nuisance parameters, when the number of clusters is relatively high with respect to the within-cluster size. However, it is still unclear how the presence of censoring would affect this issue. We consider clustered failure time data with independent censoring, and propose frequentist inference based on an integrated likelihood. We then apply the proposed approach to a stratified Weibull model. Simulation studies show that appropriately defined integrated likelihoods provide very accurate inferential results in all circumstances, such as for highly clustered data or heavy censoring, even in extreme settings where standard likelihood procedures lead to strongly misleading results. We show that the proposed method performs generally as well as the frailty model, but it is superior when the frailty distribution is seriously misspecified. An application, which concerns treatments for a frequent disease in late-stage HIV-infected people, illustrates the proposed inferential method in Weibull regression models, and compares different inferential conclusions from alternative methods.

Suggested Citation

  • Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
  • Handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9337-9
    DOI: 10.1007/s10985-015-9337-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-015-9337-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-015-9337-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    2. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    3. T. A. Severini, 2010. "Likelihood ratio statistics based on an integrated likelihood," Biometrika, Biometrika Trust, vol. 97(2), pages 481-496.
    4. N. Sartori, 2003. "Modified profile likelihoods in models with stratum nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 533-549, September.
    5. Bradley P. Carlin & James S. Hodges, 1999. "Hierarchical Proportional Hazards Regression Models for Highly Stratified Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1162-1170, December.
    6. Thomas A. Severini, 2007. "Integrated likelihood functions for non-Bayesian inference," Biometrika, Biometrika Trust, vol. 94(3), pages 529-542.
    7. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Donald A. Pierce & Ruggero Bellio, 2006. "Effects of the reference set on frequentist inferences," Biometrika, Biometrika Trust, vol. 93(2), pages 425-438, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruggero Bellio & Annamaria Guolo, 2016. "Integrated Likelihood Inference in Small Sample Meta-analysis for Continuous Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 191-201, March.
    2. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    3. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    4. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    5. Wagner Barreto-Souza & Vinícius Diniz Mayrink, 2019. "Semiparametric generalized exponential frailty model for clustered survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 679-701, June.
    6. Thomas A. Severini, 2023. "Integrated likelihood inference in multinomial distributions," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 131-142, August.
    7. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    8. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2023. "The role of score and information bias in panel data likelihoods," Journal of Econometrics, Elsevier, vol. 235(2), pages 1215-1238.
    9. F. Bartolucci & R. Bellio & A. Salvan & N. Sartori, 2016. "Modified Profile Likelihood for Fixed-Effects Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1271-1289, August.
    10. Kenneth Harttgen & Stefan Lang & Johannes Seiler, 2017. "Selective mortality and undernutrition in low- and middle-income countries," Working Papers 2017-27, Faculty of Economics and Statistics, Universität Innsbruck, revised Aug 2018.
    11. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    12. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    13. Zhenyu Zhao & Thomas A. Severini, 2017. "Integrated likelihood computation methods," Computational Statistics, Springer, vol. 32(1), pages 281-313, March.
    14. Luigi Pace & Alessandra Salvan & Laura Ventura, 2011. "Adjustments of profile likelihood through predictive densities," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 923-937, October.
    15. De Bin, Riccardo, 2016. "On the equivalence between conditional and random-effects likelihoods in exponential families," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 34-38.
    16. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    17. Zaigraev, A. & Podraza-Karakulska, A., 2014. "Maximum integrated likelihood estimator of the interest parameter when the nuisance parameter is location or scale," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 99-106.
    18. Sartori, N. & Severini, T.A. & Marras, E., 2010. "An alternative specification of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 575-584, February.
    19. Harttgen, Kenneth & Lang, Stefan & Seiler, Johannes, 2019. "Selective mortality and the anthropometric status of children in low- and middle-income countries," Economics & Human Biology, Elsevier, vol. 34(C), pages 257-273.
    20. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m052g20qh is not listed on IDEAS
    21. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:22:y:2016:i:3:d:10.1007_s10985-015-9337-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.