IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i2p481-496.html
   My bibliography  Save this article

Likelihood ratio statistics based on an integrated likelihood

Author

Listed:
  • T. A. Severini

Abstract

An integrated likelihood depends only on the parameter of interest and the data, so it can be used as a standard likelihood function for likelihood-based inference. In this paper, the higher-order asymptotic properties of the signed integrated likelihood ratio statistic for a scalar parameter of interest are considered. These results are used to construct a modified integrated likelihood ratio statistic and to suggest a class of prior densities to use in forming the integrated likelihood. The properties of the integrated likelihood ratio statistic are compared to those of the standard likelihood ratio statistic. Several examples show that the integrated likelihood ratio statistic can be a useful alternative to the standard likelihood ratio statistic. Copyright 2010, Oxford University Press.

Suggested Citation

  • T. A. Severini, 2010. "Likelihood ratio statistics based on an integrated likelihood," Biometrika, Biometrika Trust, vol. 97(2), pages 481-496.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:481-496
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq015
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaigraev, A. & Podraza-Karakulska, A., 2014. "Maximum integrated likelihood estimator of the interest parameter when the nuisance parameter is location or scale," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 99-106.
    2. Zhenyu Zhao & Thomas A. Severini, 2017. "Integrated likelihood computation methods," Computational Statistics, Springer, vol. 32(1), pages 281-313, March.
    3. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    4. Ruggero Bellio & Annamaria Guolo, 2016. "Integrated Likelihood Inference in Small Sample Meta-analysis for Continuous Outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 191-201, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:481-496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.