Forecasting Covid-19 in the United Kingdom: A dynamic SIRD model
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0271577
Download full text from publisher
References listed on IDEAS
- Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
- Shringi, Sakshi & Sharma, Harish & Rathie, Pushpa Narayan & Bansal, Jagdish Chand & Nagar, Atulya, 2021. "Modified SIRD Model for COVID-19 Spread Prediction for Northern and Southern States of India," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
- Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
- Feng, Jingxue & Wang, Liangliang, 2024. "A switching state-space transmission model for tracking epidemics and assessing interventions," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
- Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.
- Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
- Beytía, Pablo & Infante, Carlos Cruz, 2020. "Digital Pathways, Pandemic Trajectories. Using Google Trends to Track Social Responses to COVID-19," SocArXiv yndb7, Center for Open Science.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Szalkowski, Gabriel Andy & Mikalef, Patrick, 2023. "Understanding digital platform evolution using compartmental models," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
- Taesik Lee & Hayong Shin, 2016. "Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 233-253, June.
- Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2021.
"Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information,"
Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 199-231.
- Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2020. "Determinants of the Community Mobility during the COVID-19 Epidemic: The Role of Government Regulations and Information," IZA Discussion Papers 13778, Institute of Labor Economics (IZA).
- repec:osf:socarx:yndb7_v1 is not listed on IDEAS
- Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
- Zhengming Xing & Bradley Nicholson & Monica Jimenez & Timothy Veldman & Lori Hudson & Joseph Lucas & David Dunson & Aimee K. Zaas & Christopher W. Woods & Geoffrey S. Ginsburg & Lawrence Carin, 2014. "Bayesian modeling of temporal properties of infectious disease in a college student population," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1358-1382, June.
- Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
- Jianbin Tan & Ye Shen & Yang Ge & Leonardo Martinez & Hui Huang, 2023. "Age‐related model for estimating the symptomatic and asymptomatic transmissibility of COVID‐19 patients," Biometrics, The International Biometric Society, vol. 79(3), pages 2525-2536, September.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- Aouadi, Amal & Arouri, Mohamed & Roubaud, David, 2018.
"Information demand and stock market liquidity: International evidence,"
Economic Modelling, Elsevier, vol. 70(C), pages 194-202.
- Amal Aouadi & Mohamed Arouri & David Roubaud, 2018. "Information demand and stock market liquidity: International evidence," Post-Print hal-02011044, HAL.
- David J Albers & Matthew Levine & Bruce Gluckman & Henry Ginsberg & George Hripcsak & Lena Mamykina, 2017. "Personalized glucose forecasting for type 2 diabetes using data assimilation," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-38, April.
- Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.