IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271577.html
   My bibliography  Save this article

Forecasting Covid-19 in the United Kingdom: A dynamic SIRD model

Author

Listed:
  • Gustavo M Athayde
  • Airlane P Alencar

Abstract

Making use of a state space framework, we present a stochastic generalization of the SIRD model, where the mortality, infection, and underreporting rates change over time. A new format to the errors in the Susceptible-Infected-Recovered-Dead compartments is also presented, that permits reinfection. The estimated trajectories and (out-of-sample) forecasts of all these variables are presented with their confidence intervals. The model only uses as inputs the number of reported cases and deaths, and was applied for the UK from April, 2020 to Sep, 2021 (daily data). The estimated infection rate has shown a trajectory in waves very compatible with the emergence of new variants and adopted social measures. The estimated mortality rate has shown a significant descendant behaviour in 2021, which we attribute to the vaccination program, and the estimated underreporting rate has been considerably volatile, with a downward tendency, implying that, on average, more people are testing than in the beginning of the pandemic. The evolution of the proportions of the population divided into susceptible, infected, recovered and dead groups are also shown with their confidence intervals and forecast, along with an estimation of the amount of reinfection that, according to our model, has become quite significant in 2021. Finally, the estimated trajectory of the effective reproduction rate has proven to be very compatible with the real number of cases and deaths. Its forecasts with confident intervals are also presented.

Suggested Citation

  • Gustavo M Athayde & Airlane P Alencar, 2022. "Forecasting Covid-19 in the United Kingdom: A dynamic SIRD model," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0271577
    DOI: 10.1371/journal.pone.0271577
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271577
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271577&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
    2. Shringi, Sakshi & Sharma, Harish & Rathie, Pushpa Narayan & Bansal, Jagdish Chand & Nagar, Atulya, 2021. "Modified SIRD Model for COVID-19 Spread Prediction for Northern and Southern States of India," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    2. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
    3. Feng, Jingxue & Wang, Liangliang, 2024. "A switching state-space transmission model for tracking epidemics and assessing interventions," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    4. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    5. Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.
    6. Leigh Fisher & Jon Wakefield & Cici Bauer & Steve Self, 2017. "Time series modeling of pathogen-specific disease probabilities with subsampled data," Biometrics, The International Biometric Society, vol. 73(1), pages 283-293, March.
    7. Beytía, Pablo & Infante, Carlos Cruz, 2020. "Digital Pathways, Pandemic Trajectories. Using Google Trends to Track Social Responses to COVID-19," SocArXiv yndb7, Center for Open Science.
    8. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    9. Szalkowski, Gabriel Andy & Mikalef, Patrick, 2023. "Understanding digital platform evolution using compartmental models," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    10. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
    11. Taesik Lee & Hayong Shin, 2016. "Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 233-253, June.
    12. Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2021. "Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 199-231.
    13. repec:osf:socarx:yndb7_v1 is not listed on IDEAS
    14. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
    15. Zhengming Xing & Bradley Nicholson & Monica Jimenez & Timothy Veldman & Lori Hudson & Joseph Lucas & David Dunson & Aimee K. Zaas & Christopher W. Woods & Geoffrey S. Ginsburg & Lawrence Carin, 2014. "Bayesian modeling of temporal properties of infectious disease in a college student population," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1358-1382, June.
    16. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    17. Jianbin Tan & Ye Shen & Yang Ge & Leonardo Martinez & Hui Huang, 2023. "Age‐related model for estimating the symptomatic and asymptomatic transmissibility of COVID‐19 patients," Biometrics, The International Biometric Society, vol. 79(3), pages 2525-2536, September.
    18. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    19. Aouadi, Amal & Arouri, Mohamed & Roubaud, David, 2018. "Information demand and stock market liquidity: International evidence," Economic Modelling, Elsevier, vol. 70(C), pages 194-202.
    20. David J Albers & Matthew Levine & Bruce Gluckman & Henry Ginsberg & George Hripcsak & Lena Mamykina, 2017. "Personalized glucose forecasting for type 2 diabetes using data assimilation," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-38, April.
    21. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.