IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270492.html
   My bibliography  Save this article

An empirical data analysis of “price runs” in daily financial indices: Dynamically assessing market geometric distributional behavior

Author

Listed:
  • Héctor Raúl Olivares-Sánchez
  • Carlos Manuel Rodríguez-Martínez
  • Héctor Francisco Coronel-Brizio
  • Enrico Scalas
  • Thomas Henry Seligman
  • Alejandro Raúl Hernández-Montoya

Abstract

In financial time series there are time periods in which market indices values or assets prices increase or decrease monotonically. We call those events “price runs”, “elementary uninterrupted trends” or just “uninterrupted trends”. In this paper we study the distribution of the duration of uninterrupted trends for the daily indices DJIA, NASDAQ, IPC and Nikkei 225 during the period of time from 10/30/1978 to 08/07/2020 and we compare the simple geometric statistical model with p = 1 2 consistent with the EMH to the empirical data. By a fitting procedure, it is found that the geometric distribution with parameter p = 1 2 provides a good model for uninterrupted trends of short and medium duration for the more mature markets; however, longest duration events still need to be statistically characterized. Estimated values of the parameter p were also obtained and confirmed by calculating the mean value of p fluctuations from empirical data. Additionally, the observed trend duration distributions for the different studied markets are compared over time by means of the Anderson-Darling (AD) test, to the expected geometric distribution with parameter p = 1 2 and to a geometric distribution with a free parameter p, making possible to assess and compare different market geometric behavior for different dates as well as to measure the fraction of time runs duration from studied markets are consistent with the geometric distribution with p = 1 2 and in parametric free way.

Suggested Citation

  • Héctor Raúl Olivares-Sánchez & Carlos Manuel Rodríguez-Martínez & Héctor Francisco Coronel-Brizio & Enrico Scalas & Thomas Henry Seligman & Alejandro Raúl Hernández-Montoya, 2022. "An empirical data analysis of “price runs” in daily financial indices: Dynamically assessing market geometric distributional behavior," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0270492
    DOI: 10.1371/journal.pone.0270492
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270492
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270492&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    3. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    4. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    6. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    7. Scalas, Enrico, 1998. "Scaling in the market of futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 253(1), pages 394-402.
    8. LeRoy, Stephen F, 1973. "Risk Aversion and the Martingale Property of Stock Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 436-446, June.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    2. Arvid Oskar Ivar Hoffmann & Wander Jager & J. H. Von Eije, 2007. "Social Simulation of Stock Markets: Taking It to the Next Level," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-7.
    3. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    4. Attila Odabasl & Celal Asku & Vedat Akgiray, 2004. "The statistical evolution of prices on the Istanbul stock exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 10(6), pages 510-525.
    5. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    6. Kei Nakagawa & Masanori Hirano & Kentaro Minami & Takanobu Mizuta, 2024. "A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets -- A New Microfoundations of GARCH model," Papers 2409.12516, arXiv.org.
    7. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    8. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    9. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    10. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    11. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
    12. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    13. Terence Tai-Leung Chong & Siqi Hou, 2021. "Will stock rise on Valentine’s Day?," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(5), pages 646-667, May.
    14. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    15. Borkowski, Bolesław & Krawiec, Monika & Shachmurove, Yochanan, 2013. "Impact of volatility estimation method on theoretical option values," Global Finance Journal, Elsevier, vol. 24(2), pages 119-128.
    16. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    17. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    18. Boleslaw Borkowski & Monika Krawiec & Yochanan Shachmurove, 2013. "Modeling and Estimating Volatility of Options on Standard & Poor’s 500 Index," PIER Working Paper Archive 13-015, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Alin Marius ANDRIEŞ & Iulian IHNATOV & Nicu SPRINCEAN, 2017. "Do Seasonal Anomalies Still Exist In Central And Eastern European Countries? A Conditional Variance Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 60-83, December.
    20. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.