IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269483.html
   My bibliography  Save this article

Feature ranking and network analysis of global financial indices

Author

Listed:
  • Mahmudul Islam Rakib
  • Md Javed Hossain
  • Ashadun Nobi

Abstract

The feature ranking method of machine learning is applied to investigate the feature ranking and network properties of 21 world stock indices. The feature ranking is the probability of influence of each index on the target. The feature ranking matrix is determined by using the returns of indices on a certain day to predict the price returns of the next day using Random Forest and Gradient Boosting. We find that the North American indices influence others significantly during the global financial crisis, while during the European sovereign debt crisis, the significant indices are American and European. The US stock indices dominate the world stock market in most periods. The indices of two Asian countries (India and China) influence remarkably in some periods, which occurred due to the unrest state of these markets. The networks based on feature ranking are constructed by assigning a threshold at the mean of the feature ranking matrix. The global reaching centrality of the threshold network is found to increase significantly during the global financial crisis. Finally, we determine Shannon entropy from the probabilities of influence of indices on the target. The sharp drops of entropy are observed during big crises, which are due to the dominance of a few indices in these periods that can be used as a measure of the overall distribution of influences. Through this technique, we identify the indices that are influential in comparison to others, especially during crises, which can be useful to study the contagions of the global stock market.

Suggested Citation

  • Mahmudul Islam Rakib & Md Javed Hossain & Ashadun Nobi, 2022. "Feature ranking and network analysis of global financial indices," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0269483
    DOI: 10.1371/journal.pone.0269483
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269483
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269483&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pollet, Joshua M. & Wilson, Mungo, 2010. "Average correlation and stock market returns," Journal of Financial Economics, Elsevier, vol. 96(3), pages 364-380, June.
    2. repec:plo:pone00:0033799 is not listed on IDEAS
    3. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    4. Ashadun Nobi & Sungmin Lee & Doo Hwan Kim & Jae Woo Lee, 2014. "Correlation and Network Topologies in Global and Local Stock Indices," Papers 1402.1552, arXiv.org.
    5. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmudul Islam Rakib & Md Jahidul Alam & Nahid Akter & Kamrul Hasan Tuhin & Ashadun Nobi, 2024. "Change in hierarchy of the financial networks: A study on firms of an emerging market in Bangladesh," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-16, May.
    2. Siudak, Dariusz & Świetlik, Agata, 2025. "Unsupervised learning modeling of the impact of Black Swan events on financial network reconfiguration: New insights from the COVID-19 outbreak and the Russia-Ukraine war," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamrul Hasan Tuhin & Ashadun Nobi & Mahmudul Hasan Rakib & Jae Woo Lee, 2025. "Long short-term memory autoencoder based network of financial indices," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    2. Ling, Yu-Xiu & Xie, Chi & Wang, Gang-Jin, 2022. "Interconnectedness between convertible bonds and underlying stocks in the Chinese capital market: A multilayer network perspective," Emerging Markets Review, Elsevier, vol. 52(C).
    3. Sayantan Banerjee & Kousik Guhathakurta, 2019. "Change-point Analysis in Financial Networks," Papers 1911.05952, arXiv.org.
    4. Bhattacharjee, Biplab & Kumar, Rajiv & Senthilkumar, Arunachalam, 2022. "Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    6. Xiurong Chen & Aimin Hao & Yali Li, 2020. "The impact of financial contagion on real economy-An empirical research based on combination of complex network technology and spatial econometrics model," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    7. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    8. Kulkarni, Saumitra & Pharasi, Hirdesh K. & Vijayaraghavan, Sudharsan & Kumar, Sunil & Chakraborti, Anirban & Samal, Areejit, 2024. "Investigation of Indian stock markets using topological data analysis and geometry-inspired network measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    9. Kamrul Hasan Tuhin & Ashadun Nobi & Md Jafar Sadique & Mahmudul Islam Rakib & Jae Woo Lee, 2023. "Effect of network size on comparing different stock networks," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-15, December.
    10. Eduard Baitinger, 2021. "Forecasting asset returns with network‐based metrics: A statistical and economic analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1342-1375, November.
    11. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    12. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    13. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    14. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    15. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    16. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    17. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    18. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    19. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    20. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.