IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0255906.html
   My bibliography  Save this article

An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior

Author

Listed:
  • Weiwei Zhang
  • Mingyan Wang

Abstract

As the Internet retail industry continues to rise, more and more consumers choose to shop online, especially Chinese consumers. Using consumer behavior data left on the Internet to predict repurchase behavior is of great significance for companies to achieve precision marketing. This paper proposes an improved deep forest model, and the interactive behavior characteristics of users and goods are added into the original feature model to predict the repurchase behavior of e-commerce consumers. Based on the Alibaba mobile e-commerce platform data set, first construct a feature engineering that includes user characteristics, product characteristics, and interactive behavior characteristics. And then use our proposed model to make predictions. Experiments show that the model’s overall performance with increased interactive behavior features is better and has higher accuracy. Compared with the existing prediction models, the improved deep forest model has certain advantages, which not only improves the prediction accuracy but also reduces the cost of training time.

Suggested Citation

  • Weiwei Zhang & Mingyan Wang, 2021. "An improved deep forest model for prediction of e-commerce consumers’ repurchase behavior," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0255906
    DOI: 10.1371/journal.pone.0255906
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255906
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0255906&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0255906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    2. Cheng-Ju Liu & Tien-Shou Huang & Ping-Tsan Ho & Jui-Chan Huang & Ching-Tang Hsieh, 2020. "Machine learning-based e-commerce platform repurchase customer prediction model," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-15, December.
    3. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    2. Qing Yang & Naeem Hayat & Abdullah Al Mamun & Zafir Khan Mohamed Makhbul & Noor Raihani Zainol, 2022. "Sustainable customer retention through social media marketing activities using hybrid SEM-neural network approach," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    2. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    3. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    4. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    5. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Fernando López & Konstatin Kholodilin, 2023. "Putting MARS into space. Non‐linearities and spatial effects in hedonic models," Papers in Regional Science, Wiley Blackwell, vol. 102(4), pages 871-896, August.
    7. Ibtissem Baklouti, 2014. "A Psychological Approach To Microfinance Credit Scoring Via A Classification And Regression Tree," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 193-208, October.
    8. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    9. Antonio Angelo Romano & Giuseppe Scandurra & Alfonso Carfora, 2016. "Estimating the Impact of Feed-in Tariff Adoption: Similarities and Divergences among Countries through a Propensity-score Matching Method," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 144-151.
    10. Hu, Xiaolu & Huang, Haozhi & Pan, Zheyao & Shi, Jing, 2019. "Information asymmetry and credit rating: A quasi-natural experiment from China," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 132-152.
    11. Gerunov, Anton, 2016. "Modeling Economic Choice under Radical Uncertainty: Machine Learning Approaches," MPRA Paper 69199, University Library of Munich, Germany.
    12. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    13. Elcin Koc & Cem Iyigun & İnci Batmaz & Gerhard-Wilhelm Weber, 2014. "Efficient adaptive regression spline algorithms based on mapping approach with a case study on finance," Journal of Global Optimization, Springer, vol. 60(1), pages 103-120, September.
    14. Betül Kalaycı & Vilda Purutçuoğlu & Gerhard Wilhelm Weber, 2025. "Optimal model description of finance and human factor indices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(1), pages 1-26, March.
    15. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    16. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Regional Forecasting with Support Vector Regressions: The Case of Spain”," IREA Working Papers 201507, University of Barcelona, Research Institute of Applied Economics, revised Jan 2015.
    17. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Combination forecasts of tourism demand with machine learning models," Applied Economics Letters, Taylor & Francis Journals, vol. 23(6), pages 428-431, April.
    18. Yingjie Kuang & Tianchen Zhang & Zhen-Wei Huang & Zhongjie Zeng & Zhe-Yuan Li & Ling Huang & Yuefang Gao, 2025. "CATS: Clustering-Aggregated and Time Series for Business Customer Purchase Intention Prediction," Papers 2505.13558, arXiv.org.
    19. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
    20. Reza Sanei & Farhad Hosseinzadeh lotfi & Mohammad Fallah & Farzad Movahedi Sobhani, 2022. "An Estimation of an Acceptable Efficiency Frontier Having an Optimum Resource Management Approach, with a Combination of the DEA-ANN-GA Technique (A Case Study of Branches of an Insurance Company)," Mathematics, MDPI, vol. 10(23), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.