Forecasting national and regional level intensive care unit bed demand during COVID-19: The case of Italy
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0247726
Download full text from publisher
References listed on IDEAS
- Parbat, Debanjan & Chakraborty, Monisha, 2020. "A python based support vector regression model for prediction of COVID19 cases in India," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Costase Ndayishimiye & Christoph Sowada & Patrycja Dyjach & Agnieszka Stasiak & John Middleton & Henrique Lopes & Katarzyna Dubas-Jakóbczyk, 2022. "Associations between the COVID-19 Pandemic and Hospital Infrastructure Adaptation and Planning—A Scoping Review," IJERPH, MDPI, vol. 19(13), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- ArunKumar, K.E. & Kalaga, Dinesh V. & Kumar, Ch. Mohan Sai & Kawaji, Masahiro & Brenza, Timothy M, 2021. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Kumar, Anand & Priya, Bhawna & Srivastava, Samir K., 2021. "Response to the COVID-19: Understanding implications of government lockdown policies," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 76-94.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
- Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
- Gong, Ying & Wang, Yongzheng & Xie, Yuanhang & Peng, Xuzhang & Peng, Yan & Zhang, Wenhua, 2025. "Dynamic fusion LSTM-Transformer for prediction in energy harvesting from human motions," Energy, Elsevier, vol. 327(C).
- Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Mehmet Ali Cakir & Ramazan Unlu & Sümeyra Cay Cakir & Petros Xanthopoulos, 2025. "Future of Clean Cooking Energy Access in Emerging Economies by 2030," SN Operations Research Forum, Springer, vol. 6(1), pages 1-30, March.
- Emrah Gecili & Assem Ziady & Rhonda D Szczesniak, 2021. "Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-11, January.
- Camacho, Carmen & Vasilakis, Chrysovalantis, 2023. "Transmissible Diseases, Vaccination and Inequality," IZA Discussion Papers 16504, Institute of Labor Economics (IZA).
- Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
- Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2020. "Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
- Khalid A. Kheirallah & Belal Alsinglawi & Abdallah Alzoubi & Motasem N. Saidan & Omar Mubin & Mohammed S. Alorjani & Fawaz Mzayek, 2020. "The Effect of Strict State Measures on the Epidemiologic Curve of COVID-19 Infection in the Context of a Developing Country: A Simulation from Jordan," IJERPH, MDPI, vol. 17(18), pages 1-11, September.
- Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
- Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
- Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0247726. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/plo/pone00/0247726.html