IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245396.html
   My bibliography  Save this article

Recovery patterns and physics of the network

Author

Listed:
  • Alireza Ermagun
  • Nazanin Tajik

Abstract

In a progressively interconnected world, the loss of system resilience has consequences for human health, the economy, and the environment. Research has exploited the science of networks to explain the resilience of complex systems against random attacks, malicious attacks, and the localized attacks induced by natural disasters or mass attacks. Little is known about the elucidation of system recovery by the network topology. This study adds to the knowledge of network resilience by examining the nexus of recoverability and network topology. We establish a new paradigm for identifying the recovery behavior of networks and introduce the recoverability measure. Results indicate that the recovery response behavior and the recoverability measure are the function of both size and topology of networks. In small sized networks, the return to recovery exhibits homogeneous recovery behavior over topology, while the return shape is dispersed with an increase in the size of network. A network becomes more recoverable as connectivity measures of the network increase, and less recoverable as accessibility measures of network increase. Overall, the results not only offer guidance on designing recoverable networks, but also depict the recovery nature of networks deliberately following a disruption. Our recovery behavior and recoverability measure has been tested on 16 distinct network topologies. The relevant recovery behavior can be generalized based on our definition for any network topology recovering deliberately.

Suggested Citation

  • Alireza Ermagun & Nazanin Tajik, 2021. "Recovery patterns and physics of the network," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0245396
    DOI: 10.1371/journal.pone.0245396
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245396
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245396&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    2. M. E. J. Newman & Aaron Clauset, 2016. "Structure and inference in annotated networks," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    3. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ermagun, Alireza & Tajik, Nazanin & Janatabadi, Fatemeh & Mahmassani, Hani, 2023. "Uncertainty in vulnerability of metro transit networks: A global perspective," Journal of Transport Geography, Elsevier, vol. 113(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    2. Ann Bostrom & Ragnar E. Löfstedt, 2003. "Communicating Risk: Wireless and Hardwired," Risk Analysis, John Wiley & Sons, vol. 23(2), pages 241-248, April.
    3. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    4. de Oliveira, Thaiane Moreira & de Albuquerque, Sofia & Toth, Janderson Pereira & Bello, Debora Zava, 2018. "International cooperation networks of the BRICS bloc," SocArXiv b6x43, Center for Open Science.
    5. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    6. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    7. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    8. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    9. Andreas Spitz & Emőke-Ágnes Horvát, 2014. "Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    10. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    11. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    12. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    13. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.
    14. Sameer Kumar & Kuru Ratnavelu, 2016. "Perceptions of Scholars in the Field of Economics on Co-Authorship Associations: Evidence from an International Survey," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    15. Zhengzheng Pan, 2012. "Opinions and Networks: How Do They Effect Each Other," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 157-171, February.
    16. Chakraborty, Tanmoy & Tammana, Vihar & Ganguly, Niloy & Mukherjee, Animesh, 2015. "Understanding and modeling diverse scientific careers of researchers," Journal of Informetrics, Elsevier, vol. 9(1), pages 69-78.
    17. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    18. Sameer Kumar & Jariah Mohd. Jan, 2013. "Mapping research collaborations in the business and management field in Malaysia, 1980–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 491-517, December.
    19. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    20. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.