IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1705.html
   My bibliography  Save this article

Network physiology reveals relations between network topology and physiological function

Author

Listed:
  • Amir Bashan

    (Bar-Ilan University)

  • Ronny P. Bartsch

    (Brigham and Women's Hospital)

  • Jan. W. Kantelhardt

    (Institute of Physics, Martin-Luther-Universität Halle-Wittenberg)

  • Shlomo Havlin

    (Bar-Ilan University)

  • Plamen Ch. Ivanov

    (Brigham and Women's Hospital
    Boston University
    Institute of Solid State Physics, Bulgarian Academy of Sciences)

Abstract

The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiological states, the network undergoes topological transitions associated with fast reorganization of physiological interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

Suggested Citation

  • Amir Bashan & Ronny P. Bartsch & Jan. W. Kantelhardt & Shlomo Havlin & Plamen Ch. Ivanov, 2012. "Network physiology reveals relations between network topology and physiological function," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1705
    DOI: 10.1038/ncomms1705
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1705
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lapatinas, Athanasios & Garas, Antonios, 2016. "The role of networks in firms’ multi-characteristics competition and market-share inequality," MPRA Paper 68959, University Library of Munich, Germany.
    2. Berrut, Sylvie & Richmond, Peter & Roehner, Bertrand M., 2017. "Age spectrometry of infant death rates as a probe of immunity: Identification of two peaks due to viral and bacterial diseases respectively," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 915-924.
    3. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    4. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    5. Luca Faes & Alberto Porta & Michal Javorka & Giandomenico Nollo, 2017. "Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models," Complexity, Hindawi, vol. 2017, pages 1-13, December.
    6. Liu, Yang & Chen, Liping & Wu, Xiaobo & Lopes, António M. & Cui, Fengqi & Chen, YangQuan, 2023. "Theoretical analysis and experimental verification of fractional-order RC cobweb circuit network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Alireza Ermagun & Nazanin Tajik, 2021. "Recovery patterns and physics of the network," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
    8. Pyko, Nikita S. & Pyko, Svetlana A. & Markelov, Oleg A. & Karimov, Artur I. & Butusov, Denis N. & Zolotukhin, Yaroslav V. & Uljanitski, Yuri D. & Bogachev, Mikhail I., 2018. "Assessment of cooperativity in complex systems with non-periodical dynamics: Comparison of five mutual information metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1054-1072.
    9. Wang, Yan-Jun & Zhu, Yun-Feng & Zhu, Chen-Ping & Wu, Fan & Yang, Hui-Jie & Yan, Yong-Jie & Hu, Chin-Kun, 2019. "Indicator of serious flight delays with the approach of time-delay stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 363-373.
    10. Pavlov, A.N. & Pavlova, O.N. & Koronovskii, A.A. & Guyo, G.A., 2022. "Extended detrended cross-correlation analysis of nonstationary processes," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Livi, Lorenzo & Maiorino, Enrico & Pinna, Andrea & Sadeghian, Alireza & Rizzi, Antonello & Giuliani, Alessandro, 2016. "Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 199-214.
    12. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    13. David Jiménez-Grande & S Farokh Atashzar & Eduardo Martinez-Valdes & Deborah Falla, 2021. "Muscle network topology analysis for the classification of chronic neck pain based on EMG biomarkers extracted during walking," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    14. Butusov, Denis N. & Karimov, Artur I. & Pyko, Nikita S. & Pyko, Svetlana A. & Bogachev, Mikhail I., 2018. "Discrete chaotic maps obtained by symmetric integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 955-970.
    15. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    16. Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
    17. Lucila G Alvarez-Zuzek & Cristian E La Rocca & Federico Vazquez & Lidia A Braunstein, 2016. "Interacting Social Processes on Interconnected Networks," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    18. Liu, Yunxiao & Lin, Youfang & Wang, Jing & Shang, Pengjian, 2018. "Refined generalized multiscale entropy analysis for physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 975-985.
    19. Bumhee Park & Dae-Shik Kim & Hae-Jeong Park, 2014. "Graph Independent Component Analysis Reveals Repertoires of Intrinsic Network Components in the Human Brain," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    20. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    21. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    22. Feng Hu & Lin Ma & Xiu-Xiu Zhan & Yinzuo Zhou & Chuang Liu & Haixing Zhao & Zi-Ke Zhang, 2021. "The aging effect in evolving scientific citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4297-4309, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.