IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235318.html
   My bibliography  Save this article

Systematic review of the use of “magnitude-based inference” in sports science and medicine

Author

Listed:
  • Keith R Lohse
  • Kristin L Sainani
  • J Andrew Taylor
  • Michael L Butson
  • Emma J Knight
  • Andrew J Vickers

Abstract

Magnitude-based inference (MBI) is a controversial statistical method that has been used in hundreds of papers in sports science despite criticism from statisticians. To better understand how this method has been applied in practice, we systematically reviewed 232 papers that used MBI. We extracted data on study design, sample size, and choice of MBI settings and parameters. Median sample size was 10 per group (interquartile range, IQR: 8–15) for multi-group studies and 14 (IQR: 10–24) for single-group studies; few studies reported a priori sample size calculations (15%). Authors predominantly applied MBI’s default settings and chose “mechanistic/non-clinical” rather than “clinical” MBI even when testing clinical interventions (only 16 studies out of 232 used clinical MBI). Using these data, we can estimate the Type I error rates for the typical MBI study. Authors frequently made dichotomous claims about effects based on the MBI criterion of a “likely” effect and sometimes based on the MBI criterion of a “possible” effect. When the sample size is n = 8 to 15 per group, these inferences have Type I error rates of 12%-22% and 22%-45%, respectively. High Type I error rates were compounded by multiple testing: Authors reported results from a median of 30 tests related to outcomes; and few studies specified a primary outcome (14%). We conclude that MBI has promoted small studies, promulgated a “black box” approach to statistics, and led to numerous papers where the conclusions are not supported by the data. Amidst debates over the role of p-values and significance testing in science, MBI also provides an important natural experiment: we find no evidence that moving researchers away from p-values or null hypothesis significance testing makes them less prone to dichotomization or over-interpretation of findings.

Suggested Citation

  • Keith R Lohse & Kristin L Sainani & J Andrew Taylor & Michael L Butson & Emma J Knight & Andrew J Vickers, 2020. "Systematic review of the use of “magnitude-based inference” in sports science and medicine," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0235318
    DOI: 10.1371/journal.pone.0235318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland, 2019. "Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of P-Values and Their Resolution With S-Values," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 106-114, March.
    2. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    3. Valentin Amrhein & David Trafimow & Sander Greenland, 2019. "Inferential Statistics as Descriptive Statistics: There Is No Replication Crisis if We Don’t Expect Replication," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 262-270, March.
    4. Kerrie L Mengersen & Christopher C Drovandi & Christian P Robert & David B Pyne & Christopher J Gore, 2016. "Bayesian Estimation of Small Effects in Exercise and Sports Science," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    5. Ronald D. Fricker & Katherine Burke & Xiaoyan Han & William H. Woodall, 2019. "Assessing the Statistical Analyses Used in Basic and Applied Social Psychology After Their p-Value Ban," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 374-384, March.
    6. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    7. Valentin Amrhein & Sander Greenland & Blake McShane, 2019. "Scientists rise up against statistical significance," Nature, Nature, vol. 567(7748), pages 305-307, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Álvarez-Pardo & José Antonio de Paz & Ena Montserrat Romero-Pérez & José Manuel Tánori-Tapia & Pablo Alejandro Rendón-Delcid & Jerónimo J. González-Bernal & Jessica Fernández-Solana & Lucía Sim, 2023. "Related Factors with Depression and Anxiety in Mastectomized Women Breast Cancer Survivors," IJERPH, MDPI, vol. 20(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckelei, Thomas & Huettel, Silke & Odening, Martin & Rommel, Jens, 2021. "The replicability crisis and the p-value debate – what are the consequences for the agricultural and food economics community?," Discussion Papers 316369, University of Bonn, Institute for Food and Resource Economics.
    2. Uwe Hassler & Marc‐Oliver Pohle, 2022. "Unlucky Number 13? Manipulating Evidence Subject to Snooping," International Statistical Review, International Statistical Institute, vol. 90(2), pages 397-410, August.
    3. Matteo M. Galizzi & Daniel Navarro-Martinez, 2019. "On the External Validity of Social Preference Games: A Systematic Lab-Field Study," Management Science, INFORMS, vol. 65(3), pages 976-1002, March.
    4. Li Liu & Qinji Su & Lixia Li & Xiaohui Lin & Yu Gan & Sidong Chen, 2014. "The Common Variant rs4444235 near BMP4 Confers Genetic Susceptibility of Colorectal Cancer: An Updated Meta-Analysis Based on a Comprehensive Statistical Strategy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    5. Marlo M Vernon & E Andrew Balas & Shaher Momani, 2018. "Are university rankings useful to improve research? A systematic review," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
    6. Markku Maula & Wouter Stam, 2020. "Enhancing Rigor in Quantitative Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 44(6), pages 1059-1090, November.
    7. Jenny T van der Steen & Cornelis A van den Bogert & Mirjam C van Soest-Poortvliet & Soulmaz Fazeli Farsani & René H J Otten & Gerben ter Riet & Lex M Bouter, 2018. "Determinants of selective reporting: A taxonomy based on content analysis of a random selection of the literature," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-15, February.
    8. Pascucci, Domenico & Sassano, Michele & Nurchis, Mario Cesare & Cicconi, Michela & Acampora, Anna & Park, Daejun & Morano, Carmen & Damiani, Gianfranco, 2021. "Impact of interprofessional collaboration on chronic disease management: Findings from a systematic review of clinical trial and meta-analysis," Health Policy, Elsevier, vol. 125(2), pages 191-202.
    9. Arjen Witteloostuijn, 2020. "New-day statistical thinking: A bold proposal for a radical change in practices," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 51(2), pages 274-278, March.
    10. Hans Van Remoortel & Hans Scheers & Emmy De Buck & Winne Haenen & Philippe Vandekerckhove, 2020. "Prediction modelling studies for medical usage rates in mass gatherings: A systematic review," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    11. Chin, Jason & Zeiler, Kathryn, 2021. "Replicability in Empirical Legal Research," LawArXiv 2b5k4, Center for Open Science.
    12. Jeremy Arkes, 2020. "Teaching Graduate (and Undergraduate) Econometrics: Some Sensible Shifts to Improve Efficiency, Effectiveness, and Usefulness," Econometrics, MDPI, vol. 8(3), pages 1-23, September.
    13. Ute Laermann-Nguyen & Martin Backfisch, 2021. "Innovation crisis in the pharmaceutical industry? A survey," SN Business & Economics, Springer, vol. 1(12), pages 1-37, December.
    14. Eric W Bridgeford & Shangsi Wang & Zeyi Wang & Ting Xu & Cameron Craddock & Jayanta Dey & Gregory Kiar & William Gray-Roncal & Carlo Colantuoni & Christopher Douville & Stephanie Noble & Carey E Prieb, 2021. "Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-20, September.
    15. Alexander Schniedermann, 2021. "A comparison of systematic reviews and guideline-based systematic reviews in medical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9829-9846, December.
    16. Jae H. Kim, 2022. "Moving to a world beyond p-value," Review of Managerial Science, Springer, vol. 16(8), pages 2467-2493, November.
    17. Smriti Kumar & Elizabeth G. Miller & Martin Mende & Maura L. Scott, 2022. "Language matters: humanizing service robots through the use of language during the COVID-19 pandemic," Marketing Letters, Springer, vol. 33(4), pages 607-623, December.
    18. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    19. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    20. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.