IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233793.html
   My bibliography  Save this article

Associations between area socioeconomic status, individual mental health, physical activity, diet and change in cardiometabolic risk amongst a cohort of Australian adults: A longitudinal path analysis

Author

Listed:
  • Suzanne J Carroll
  • Michael J Dale
  • Theophile Niyonsenga
  • Anne W Taylor
  • Mark Daniel

Abstract

Presumed pathways from environments to cardiometabolic risk largely implicate health behaviour although mental health may play a role. Few studies assess relationships between these factors. This study estimated associations between area socioeconomic status (SES), mental health, diet, physical activity, and 10-year change in glycosylated haemoglobin (HbA1c), comparing two proposed path structures: 1) mental health and behaviour functioning as parallel mediators between area SES and HbA1c; and 2) a sequential structure where mental health influences behaviour and consequently HbA1c. Three waves (10 years) of population-based biomedical cohort data were spatially linked to census data based on participant residential address. Area SES was expressed at baseline using an established index (SEIFA-IEO). Individual behavioural and mental health information (Wave 2) included diet (fruit and vegetable servings per day), physical activity (meets/does not meet recommendations), and the mental health component score of the 36-item Short Form Health Survey. HbA1c was measured at each wave. Latent variable growth models with a structural equation modelling approach estimated associations within both parallel and sequential path structures. Models were adjusted for age, sex, employment status, marital status, education, and smoking. The sequential path model best fit the data. HbA1c worsened over time. Greater area SES was statistically significantly associated with greater fruit intake, meeting physical activity recommendations, and had a protective effect against increasing HbA1c directly and indirectly through physical activity behaviour. Positive mental health was statistically significantly associated with greater fruit and vegetable intakes and was indirectly protective against increasing HbA1c through physical activity. Greater SES was protective against increasing HbA1c. This relationship was partially mediated by physical activity but not diet. A protective effect of mental health was exerted through physical activity. Public health interventions should ensure individuals residing in low SES areas, and those with poorer mental health are supported in meeting physical activity recommendations.

Suggested Citation

  • Suzanne J Carroll & Michael J Dale & Theophile Niyonsenga & Anne W Taylor & Mark Daniel, 2020. "Associations between area socioeconomic status, individual mental health, physical activity, diet and change in cardiometabolic risk amongst a cohort of Australian adults: A longitudinal path analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0233793
    DOI: 10.1371/journal.pone.0233793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233793
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steffen Andreas Schüle & Gabriele Bolte, 2015. "Interactive and Independent Associations between the Socioeconomic and Objective Built Environment on the Neighbourhood Level and Individual Health: A Systematic Review of Multilevel Studies," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-31, April.
    2. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    3. Badland, Hannah & Whitzman, Carolyn & Lowe, Melanie & Davern, Melanie & Aye, Lu & Butterworth, Iain & Hes, Dominique & Giles-Corti, Billie, 2014. "Urban liveability: Emerging lessons from Australia for exploring the potential for indicators to measure the social determinants of health," Social Science & Medicine, Elsevier, vol. 111(C), pages 64-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bridget Allen & Karla Canuto & John Robert Evans & Ebony Lewis & Josephine Gwynn & Kylie Radford & Kim Delbaere & Justin Richards & Nigel Lovell & Michelle Dickson & Rona Macniven, 2021. "Facilitators and Barriers to Physical Activity and Sport Participation Experienced by Aboriginal and Torres Strait Islander Adults: A Mixed Method Review," IJERPH, MDPI, vol. 18(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    2. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    3. Hannah Badland & Allison Milner & Rebecca Roberts & Billie Giles-Corti, 2017. "Are Area-Level Measures of Employment Associated with Health Behaviours and Outcomes?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 134(1), pages 237-251, October.
    4. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    5. Caliendo, Marco & Künn, Steffen & Uhlendorff, Arne, 2016. "Earnings exemptions for unemployed workers: The relationship between marginal employment, unemployment duration and job quality," Labour Economics, Elsevier, vol. 42(C), pages 177-193.
    6. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    7. Bruno Crepon & Marc Ferracci & Grégory Jolivet & Gerard Van Den Berg, 2010. "Analyzing the Anticipation of Treatments with Data on Notification Dates," Working Papers 2010-41, Center for Research in Economics and Statistics.
    8. Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
    9. Jana, Arnab & Sarkar, Ahana & Bardhan, Ronita, 2020. "Analysing outdoor airflow and pollution as a parameter to assess the compatibility of mass-scale low-cost residential development," Land Use Policy, Elsevier, vol. 99(C).
    10. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    11. Gerard J Van Den Berg & Barbara Hofmann & Arne Uhlendorff, 2016. "The Role of Sickness in the Evaluation of Job Search Assistance and Sanctions," Working Papers 2016-17, Center for Research in Economics and Statistics.
    12. Bergemann, Annette & Pohlan, Laura & Uhlendorff, Arne, 2016. "Job Creation Schemes in Turbulent Times," IZA Discussion Papers 10369, Institute of Labor Economics (IZA).
    13. Harris, Patrick & Kent, Jennifer & Sainsbury, Peter & Thow, Anne Marie, 2016. "Framing health for land-use planning legislation: A qualitative descriptive content analysis," Social Science & Medicine, Elsevier, vol. 148(C), pages 42-51.
    14. Andrew Bell & Malcolm Fairbrother & Kelvyn Jones, 2019. "Fixed and random effects models: making an informed choice," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 1051-1074, March.
    15. Gerard J. van den Berg & Arne Uhlendorff & Joachim Wolff, 2022. "The Impact of Sanctions for Young Welfare Recipients on Transitions to Work and Wages, and on Dropping Out," Economica, London School of Economics and Political Science, vol. 89(353), pages 1-28, January.
    16. Alfò, Marco & Rocchetti, Irene, 2013. "A flexible approach to finite mixture regression models for multivariate mixed responses," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1754-1758.
    17. Claudia Stommel & Heribert Hofer & Marion L East, 2016. "The Effect of Reduced Water Availability in the Great Ruaha River on the Vulnerable Common Hippopotamus in the Ruaha National Park, Tanzania," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    18. Furlong, Casey & Phelan, Kath & Dodson, Jago, 2018. "The role of water utilities in urban greening: A case study of Melbourne, Australia," Utilities Policy, Elsevier, vol. 53(C), pages 25-31.
    19. Victor Chernozhukov & Ivan Fernandez-Val & Jinyong Hahn & Whitney K. Newey, 2008. "Identification and estimation of marginal effects in nonlinear panel models," CeMMAP working papers CWP25/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Joep Tijm & Thomas Michielsen & Raoul van Maarseveen & Peter Zwaneveld, 2018. "How Large are Road Traffic Externalities in the City? The Highway Tunneling in Maastricht, the Netherlands," CESifo Working Paper Series 7089, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.