IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230569.html
   My bibliography  Save this article

Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material

Author

Listed:
  • Simen Alexander Linge Johnsen
  • Jörg Bollmann

Abstract

Different morphotypes of the abundant marine calcifying algal species Emiliania huxleyi are commonly linked to various degrees of E. huxleyi calcification, but few studies have been done to validate this assumption. This study investigated therefore whether E. huxleyi morphotypes can be related to coccolithophore calcification and coccolith mass. Samples from January (high productivity) and September (low productivity) 1997 at an open ocean and a coastal site near the Canary Islands were analysed using a combination of thickness measurements (Circular Polarizer Retardation estimates (CPR) method), Scanning Electron Microscope imaging, and Markov Chain Monte Carlo (MCMC) models. Mean E. huxleyi coccolith mass varied from a maximum of 2.9pg at the open ocean station in January to a minimum of 1.7pg in September at both stations. In contrast, overall calcite produced by E. huxleyi (assuming 23 coccoliths/cell) varied from a maximum of 2.6 μgL-1 at the coastal station in January to a minimum of 0.5 μgL-1 in September at the open ocean site. The relative abundance of “Overcalcified” Type A, Type A, Group B and malformed coccoliths was determined from SEM images. The mean coccolith mass of “Overcalcified” Type A was 2.0pg using the CPR-method, while mean mass of Type A and Group B coccoliths was determined using coccolith length measurements from SEM images and MCMC models relating thickness measurements to morphotype relative abundance. Type A cocccolith mass varied from a 1.6pg to 2.6pg and Group B coccolith mass varied from 1.5pg to 2.0pg. These results demonstrate that the coccolith mass of Type A, “Overcalcified” Type A, and Group B do not differ systematically and there is no systematic relationship between relative abundance of a morphotype and the overall calcite production of E. huxleyi. Therefore, morphotype appearance and relative abundance can not be uniformly used as reliable indicators of E. huxleyi calcification or calcite production.

Suggested Citation

  • Simen Alexander Linge Johnsen & Jörg Bollmann, 2020. "Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
  • Handle: RePEc:plo:pone00:0230569
    DOI: 10.1371/journal.pone.0230569
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230569
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230569&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simen Alexander Linge Johnsen & Jörg Bollmann & Christina Gebuehr & Jens O Herrle, 2019. "Relationship between coccolith length and thickness in the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
    2. L. Beaufort & I. Probert & T. de Garidel-Thoron & E. M. Bendif & D. Ruiz-Pino & N. Metzl & C. Goyet & N. Buchet & P. Coupel & M. Grelaud & B. Rost & R. E. M. Rickaby & C. de Vargas, 2011. "Sensitivity of coccolithophores to carbonate chemistry and ocean acidification," Nature, Nature, vol. 476(7358), pages 80-83, August.
    3. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    4. Ulf Riebesell & Ingrid Zondervan & Björn Rost & Philippe D. Tortell & Richard E. Zeebe & François M. M. Morel, 2000. "Reduced calcification of marine plankton in response to increased atmospheric CO2," Nature, Nature, vol. 407(6802), pages 364-367, September.
    5. Ken Caldeira & Michael E. Wickett, 2003. "Anthropogenic carbon and ocean pH," Nature, Nature, vol. 425(6956), pages 365-365, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rau, Greg H. & Knauss, Kevin G. & Langer, William H. & Caldeira, Ken, 2007. "Reducing energy-related CO2 emissions using accelerated weathering of limestone," Energy, Elsevier, vol. 32(8), pages 1471-1477.
    2. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    3. Simen Alexander Linge Johnsen & Jörg Bollmann & Christina Gebuehr & Jens O Herrle, 2019. "Relationship between coccolith length and thickness in the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
    4. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    5. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    6. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    7. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    8. Brian Hartley, 2020. "Corridor stability of the Kaleckian growth model: a Markov-switching approach," Working Papers 2013, New School for Social Research, Department of Economics, revised Nov 2020.
    9. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    10. Bourret, A. & Martin, Y. & Troussellier, M., 2007. "Modelling the response of microbial food web to an increase of atmospheric CO2 partial pressure in a marine Mediterranean coastal ecosystem (Brusc Lagoon, France)," Ecological Modelling, Elsevier, vol. 208(2), pages 189-204.
    11. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    12. Nichole E. Carlson & Timothy D. Johnson & Morton B. Brown, 2009. "A Bayesian Approach to Modeling Associations Between Pulsatile Hormones," Biometrics, The International Biometric Society, vol. 65(2), pages 650-659, June.
    13. Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
    14. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    15. Ogawa, Ryo & Engler, Jan O. & Cord, Anna F., 2024. "Functional responses in habitat selection as a management tool to evaluate agri-environment schemes for farmland birds," Ecological Modelling, Elsevier, vol. 494(C).
    16. Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.
    17. Liqun Wang & James Fu, 2007. "A practical sampling approach for a Bayesian mixture model with unknown number of components," Statistical Papers, Springer, vol. 48(4), pages 631-653, October.
    18. repec:plo:pone00:0120376 is not listed on IDEAS
    19. Royce Anders & William Batchelder, 2015. "Cultural Consensus Theory for the Ordinal Data Case," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 151-181, March.
    20. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    21. Bilancia, Massimo & Dačević, Rade, 2025. "A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm," Journal of Informetrics, Elsevier, vol. 19(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.