IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226243.html
   My bibliography  Save this article

Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different—A modelling approach

Author

Listed:
  • Rafael Muñoz-Tamayo
  • Milka Popova
  • Maxence Tillier
  • Diego P Morgavi
  • Jean-Pierre Morel
  • Gérard Fonty
  • Nicole Morel-Desrosiers

Abstract

Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem of mammals. Our purpose was to quantitatively characterize the dynamics of methanogenesis by integrating microbiology, thermodynamics and mathematical modelling. For that, in vitro growth experiments were performed with pure cultures of key methanogens from the human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminantium and Methanobacterium formicium. Microcalorimetric experiments were performed to quantify the methanogenesis heat flux. We constructed an energetic-based mathematical model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for CH4. Together, experimental data and model enabled us to quantify metabolism kinetics and energetic patterns that were specific and distinct for each species despite their use of analogous methane-producing pathways. Then, we tested in silico the interactions between these methanogens under an in vivo simulation scenario using a theoretical modelling exercise. In silico simulations suggest that the classical competitive exclusion principle is inapplicable to gut ecosystems and that kinetic information alone cannot explain gut ecological aspects such as microbial coexistence. We suggest that ecological models of gut ecosystems require the integration of microbial kinetics with nonlinear behaviours related to spatial and temporal variations taking place in mammalian guts. Our work provides novel information on the thermodynamics and dynamics of methanogens. This understanding will be useful to construct new gut models with enhanced prediction capabilities and could have practical applications for promoting gut health in mammals and mitigating ruminant methane emissions.

Suggested Citation

  • Rafael Muñoz-Tamayo & Milka Popova & Maxence Tillier & Diego P Morgavi & Jean-Pierre Morel & Gérard Fonty & Nicole Morel-Desrosiers, 2019. "Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different—A modelling approach," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0226243
    DOI: 10.1371/journal.pone.0226243
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226243
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226243&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bradley E. Jackson & Michael J. McInerney, 2002. "Anaerobic microbial metabolism can proceed close to thermodynamic limits," Nature, Nature, vol. 415(6870), pages 454-456, January.
    2. R. Craig MacLean & Ivana Gudelj, 2006. "Resource competition and social conflict in experimental populations of yeast," Nature, Nature, vol. 441(7092), pages 498-501, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivana Gudelj & Margie Kinnersley & Peter Rashkov & Karen Schmidt & Frank Rosenzweig, 2016. "Stability of Cross-Feeding Polymorphisms in Microbial Communities," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-17, December.
    2. Grimalt-Alemany, Antonio & Asimakopoulos, Konstantinos & Skiadas, Ioannis V. & Gavala, Hariklia N., 2020. "Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia," Applied Energy, Elsevier, vol. 262(C).
    3. Kazufumi Hosoda & Shingo Suzuki & Yoshinori Yamauchi & Yasunori Shiroguchi & Akiko Kashiwagi & Naoaki Ono & Kotaro Mori & Tetsuya Yomo, 2011. "Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    4. Olga A Nev & Richard J Lindsay & Alys Jepson & Lisa Butt & Robert E Beardmore & Ivana Gudelj, 2021. "Predicting microbial growth dynamics in response to nutrient availability," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    5. Tetsushi Ohdaira & Takao Terano, 2009. "Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-7.
    6. Mohammad Salahshour, 2021. "Freedom to choose between public resources promotes cooperation," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    7. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. de Oliveira, Viviane M. & Amado, André & Campos, Paulo R.A., 2018. "The interplay of tradeoffs within the framework of a resource-based modelling," Ecological Modelling, Elsevier, vol. 384(C), pages 249-260.
    9. Cheng, Haihui & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2023. "Multistability and bifurcation analysis for a three-strategy game system with public goods feedback and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Avik Mukherjee & Jade Ealy & Yanqing Huang & Nina Catherine Benites & Mark Polk & Markus Basan, 2023. "Coexisting ecotypes in long-term evolution emerged from interacting trade-offs," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Elhanati, Yuval & Schuster, Stefan & Brenner, Naama, 2011. "Dynamic modeling of cooperative protein secretion in microorganism populations," Theoretical Population Biology, Elsevier, vol. 80(1), pages 49-63.
    12. Martin Schuster & Eric Foxall & David Finch & Hal Smith & Patrick De Leenheer, 2017. "Tragedy of the commons in the chemostat," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.