IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0186119.html
   My bibliography  Save this article

Tragedy of the commons in the chemostat

Author

Listed:
  • Martin Schuster
  • Eric Foxall
  • David Finch
  • Hal Smith
  • Patrick De Leenheer

Abstract

We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.

Suggested Citation

  • Martin Schuster & Eric Foxall & David Finch & Hal Smith & Patrick De Leenheer, 2017. "Tragedy of the commons in the chemostat," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0186119
    DOI: 10.1371/journal.pone.0186119
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186119
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0186119&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0186119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ashleigh S. Griffin & Stuart A. West & Angus Buckling, 2004. "Cooperation and competition in pathogenic bacteria," Nature, Nature, vol. 430(7003), pages 1024-1027, August.
    2. Francesca Fiegna & Yuen-Tsu N. Yu & Supriya V. Kadam & Gregory J. Velicer, 2006. "Evolution of an obligate social cheater to a superior cooperator," Nature, Nature, vol. 441(7091), pages 310-314, May.
    3. Stephen P. Diggle & Ashleigh S. Griffin & Genevieve S. Campbell & Stuart A. West, 2007. "Cooperation and conflict in quorum-sensing bacterial populations," Nature, Nature, vol. 450(7168), pages 411-414, November.
    4. Kevin R. Foster & Gad Shaulsky & Joan E. Strassmann & David C. Queller & Chris R. L. Thompson, 2004. "Pleiotropy as a mechanism to stabilize cooperation," Nature, Nature, vol. 431(7009), pages 693-696, October.
    5. Paul B. Rainey & Katrina Rainey, 2003. "Evolution of cooperation and conflict in experimental bacterial populations," Nature, Nature, vol. 425(6953), pages 72-74, September.
    6. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    7. R. Craig MacLean & Ivana Gudelj, 2006. "Resource competition and social conflict in experimental populations of yeast," Nature, Nature, vol. 441(7092), pages 498-501, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazufumi Hosoda & Shingo Suzuki & Yoshinori Yamauchi & Yasunori Shiroguchi & Akiko Kashiwagi & Naoaki Ono & Kotaro Mori & Tetsuya Yomo, 2011. "Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    2. Elhanati, Yuval & Schuster, Stefan & Brenner, Naama, 2011. "Dynamic modeling of cooperative protein secretion in microorganism populations," Theoretical Population Biology, Elsevier, vol. 80(1), pages 49-63.
    3. Kerry E Boyle & Hilary Monaco & Dave van Ditmarsch & Maxime Deforet & Joao B Xavier, 2015. "Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-26, June.
    4. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    5. Felix J H Hol & Peter Galajda & Krisztina Nagy & Rutger G Woolthuis & Cees Dekker & Juan E Keymer, 2013. "Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Olga A Nev & Richard J Lindsay & Alys Jepson & Lisa Butt & Robert E Beardmore & Ivana Gudelj, 2021. "Predicting microbial growth dynamics in response to nutrient availability," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    7. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    8. Tetsushi Ohdaira & Takao Terano, 2009. "Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-7.
    9. Liu, Yuan & Cao, Lixuan & Wu, Bin, 2022. "General non-linear imitation leads to limit cycles in eco-evolutionary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Cao, Lixuan & Wu, Bin, 2021. "Eco-evolutionary dynamics with payoff-dependent environmental feedback," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. David Bruce Borenstein & Yigal Meir & Joshua W Shaevitz & Ned S Wingreen, 2013. "Non-Local Interaction via Diffusible Resource Prevents Coexistence of Cooperators and Cheaters in a Lattice Model," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    12. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    13. Alexander Isakov & David Rand, 2012. "The Evolution of Coercive Institutional Punishment," Dynamic Games and Applications, Springer, vol. 2(1), pages 97-109, March.
    14. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    15. Ivana Gudelj & Margie Kinnersley & Peter Rashkov & Karen Schmidt & Frank Rosenzweig, 2016. "Stability of Cross-Feeding Polymorphisms in Microbial Communities," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-17, December.
    16. Claudius Gros, 2022. "Generic catastrophic poverty when selfish investors exploit a degradable common resource," Papers 2208.08171, arXiv.org, revised Jan 2023.
    17. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.
    18. Anne Mund & Christina Kuttler & Judith Pérez-Velázquez, 2019. "Using G -Functions to Investigate the Evolutionary Stability of Bacterial Quorum Sensing," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
    19. Asher Leeks & Stuart A. West & Melanie Ghoul, 2021. "The evolution of cheating in viruses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    20. Hilary Monaco & Kevin S. Liu & Tiago Sereno & Maxime Deforet & Bradford P. Taylor & Yanyan Chen & Caleb C. Reagor & Joao B. Xavier, 2022. "Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0186119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.