IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164234.html
   My bibliography  Save this article

Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

Author

Listed:
  • Hazzar Habbib
  • Julien Verzeaux
  • Elodie Nivelle
  • David Roger
  • Jérôme Lacoux
  • Manuella Catterou
  • Bertrand Hirel
  • Frédéric Dubois
  • Thierry Tétu

Abstract

A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize.

Suggested Citation

  • Hazzar Habbib & Julien Verzeaux & Elodie Nivelle & David Roger & Jérôme Lacoux & Manuella Catterou & Bertrand Hirel & Frédéric Dubois & Thierry Tétu, 2016. "Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0164234
    DOI: 10.1371/journal.pone.0164234
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164234
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164234&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bertrand Hirel & Thierry Tétu & Peter J. Lea & Frédéric Dubois, 2011. "Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture," Sustainability, MDPI, vol. 3(9), pages 1-34, September.
    2. J. P. Royston, 1982. "An Extension of Shapiro and Wilk's W Test for Normality to Large Samples," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 115-124, June.
    3. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    4. Moser, Samuel B. & Feil, Boy & Jampatong, Sansern & Stamp, Peter, 2006. "Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 41-58, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minguez, Ana & Javier Sese, F., 2022. "Why do you want a relationship, anyway? Consent to receive marketing communications and donors’ willingness to engage with nonprofits," Journal of Business Research, Elsevier, vol. 148(C), pages 356-367.
    2. Lauren Bin Dong & David E. A. Giles, 2004. "An Empirical Likelihood Ratio Test for Normality," Econometrics Working Papers 0401, Department of Economics, University of Victoria.
    3. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    4. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    5. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    6. Ngoc Thien Le & Watit Benjapolakul, 2019. "Evaluation of Contribution of PV Array and Inverter Configurations to Rooftop PV System Energy Yield Using Machine Learning Techniques," Energies, MDPI, vol. 12(16), pages 1-13, August.
    7. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    8. Peter Gerbrands & Brigitte Unger & Joras Ferwerda, 2022. "Bilateral responsive regulation and international tax competition: An agent‐based simulation," Regulation & Governance, John Wiley & Sons, vol. 16(3), pages 760-780, July.
    9. Keith Pilbeam & Hamish Preston, 2019. "An Empirical Investigation of the Performance of Japanese Mutual Funds: Skill or Luck?," IJFS, MDPI, vol. 7(1), pages 1-16, January.
    10. Ioan Ianoş & Igor Sîrodoev & Gabriel Pascariu & Geoffrey Henebry, 2016. "Divergent patterns of built-up urban space growth following post-socialist changes," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3172-3188, November.
    11. Joseph Aharony & Chan†Jane Lin & Martin P. Loeb, 1993. "Initial Public Offerings, Accounting Choices, and Earnings Management," Contemporary Accounting Research, John Wiley & Sons, vol. 10(1), pages 61-81, September.
    12. Orgeta Gjermëni, 2017. "Temporal Statistical Analysis of Degree Distributions in an Undirected Landline Phone Call Network Graph Series," Data, MDPI, vol. 2(4), pages 1-10, October.
    13. Prăvălie, Remus & Sîrodoev, Igor & Patriche, Cristian & Roșca, Bogdan & Piticar, Adrian & Bandoc, Georgeta & Sfîcă, Lucian & Tişcovschi, Adrian & Dumitraşcu, Monica & Chifiriuc, Carmen & Mănoiu, Valen, 2020. "The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades," Agricultural Systems, Elsevier, vol. 179(C).
    14. V.A. Byvshev & N.E. Brovkina, 2018. "Credit Market and Economic Growth of Russia: Modeling Mutual Influence," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 622-636.
    15. Sebastian Klaudiusz Tomczak, 2021. "Ratio Selection between Six Sectors in the Visegrad Group Using Parametric and Nonparametric ANOVA," Energies, MDPI, vol. 14(21), pages 1-20, November.
    16. Owusu Benjamin, 2021. "Fiscal Sustainability Hypothesis Test in Central and Eastern Europe: A Panel Data Perspective," Central European Economic Journal, Sciendo, vol. 8(55), pages 285-312, January.
    17. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    18. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    19. Gustavo Castilho Beruski & Luis Miguel Schiebelbein & André Belmont Pereira, 2020. "Maize Yield Components as Affected by Plant Population, Planting Date and Soil Coverings in Brazil," Agriculture, MDPI, vol. 10(12), pages 1-20, November.
    20. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.