IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150558.html
   My bibliography  Save this article

Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

Author

Listed:
  • Kai Yit Kok
  • Parvathy Rajendran

Abstract

The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.

Suggested Citation

  • Kai Yit Kok & Parvathy Rajendran, 2016. "Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0150558
    DOI: 10.1371/journal.pone.0150558
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150558
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150558&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Zhenpo Wang & Fengchun Sun & David G. Dorrell, 2014. "Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter," Energies, MDPI, vol. 7(5), pages 1-14, May.
    2. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zengliang Han & Dongqing Wang & Feng Liu & Zhiyong Zhao, 2017. "Multi-AGV path planning with double-path constraints by using an improved genetic algorithm," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
    2. ZhengQiang Xiong & Qiuze Yu & Tao Sun & Wen Chen & Yuhao Wu & Jie Yin, 2020. "Super-resolution reconstruction of real infrared images acquired with unmanned aerial vehicle," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Lucian Roșca & Mihai Duguleană, 2016. "An Online Observer for Minimization of Pulsating Torque in SMPM Motors," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-22, April.
    3. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    5. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    6. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    7. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    8. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    9. Yang, Zunxian & Meng, Qing & Yan, Wenhuan & Lv, Jun & Guo, Zaiping & Yu, Xuebin & Chen, Zhixin & Guo, Tailiang & Zeng, Rong, 2015. "Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application," Energy, Elsevier, vol. 82(C), pages 960-967.
    10. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    11. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    12. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    13. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    14. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    15. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    16. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    17. Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
    18. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    19. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    20. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.