IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126674.html
   My bibliography  Save this article

Percolation on Networks with Conditional Dependence Group

Author

Listed:
  • Hui Wang
  • Ming Li
  • Lin Deng
  • Bing-Hong Wang

Abstract

Recently, the dependence group has been proposed to study the robustness of networks with interdependent nodes. A dependence group means that a failed node in the group can lead to the failures of the whole group. Considering the situation of real networks that one failed node may not always break the functionality of a dependence group, we study a cascading failure model that a dependence group fails only when more than a fraction β of nodes of the group fail. We find that the network becomes more robust with the increasing of the parameter β. However, the type of percolation transition is always first order unless the model reduces to the classical network percolation model, which is independent of the degree distribution of the network. Furthermore, we find that a larger dependence group size does not always make the networks more fragile. We also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulations well.

Suggested Citation

  • Hui Wang & Ming Li & Lin Deng & Bing-Hong Wang, 2015. "Percolation on Networks with Conditional Dependence Group," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0126674
    DOI: 10.1371/journal.pone.0126674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126674
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui & Li, Ming & Deng, Lin & Wang, Bing-Hong, 2018. "Robustness of networks with assortative dependence groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 195-200.
    2. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    3. Zhang, Min & Wang, Xiaojuan & Jin, Lei & Song, Mei, 2021. "Cascade phenomenon in multilayer networks with dependence groups and hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    2. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    3. Wang, Jianwei & Cai, Lin & Xu, Bo & Li, Peng & Sun, Enhui & Zhu, Zhiguo, 2016. "Out of control: Fluctuation of cascading dynamics in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1231-1243.
    4. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    5. Wang, Weihong & Chen, MingMing & Min, Yong & Jin, Xiaogang, 2016. "Structural diversity effects of multilayer networks on the threshold of interacting epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 254-262.
    6. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    7. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    9. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    10. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    11. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    14. Jin-Hee Cho & Jianxi Gao, 2016. "Cyber War Game in Temporal Networks," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-16, February.
    15. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    16. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    17. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    19. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    20. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.