IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0015554.html
   My bibliography  Save this article

Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making

Author

Listed:
  • Jean Daunizeau
  • Hanneke E M den Ouden
  • Matthias Pessiglione
  • Stefan J Kiebel
  • Klaas E Stephan
  • Karl J Friston

Abstract

In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under uncertainty. This approach induces a distinction between a subject's perceptual model, which underlies the representation of a hidden “state of affairs” and a response model, which predicts the ensuing behavioural (or neurophysiological) responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian decision theoretic perspective, uncertain representations are so-called “posterior” beliefs, which are influenced by subjective “prior” beliefs. Preferences and goals are encoded through a “loss” (or “utility”) function, which measures the cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. Critically, this enables one to “observe the observer”, i.e. identify (context- or subject-dependent) prior beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic predictions). In a companion paper (‘Observing the observer (II): deciding when to decide’), we describe a concrete implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative learning task.

Suggested Citation

  • Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Klaas E Stephan & Karl J Friston, 2010. "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0015554
    DOI: 10.1371/journal.pone.0015554
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015554
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015554&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0015554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 817-868.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    2. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    3. Payam Piray & Nathaniel D. Daw, 2024. "Computational processes of simultaneous learning of stochasticity and volatility in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Marie Devaine & Guillaume Hollard & Jean Daunizeau, 2014. "The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-14, December.
    5. Jean Daunizeau & Vincent Adam & Lionel Rigoux, 2014. "VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-16, January.
    6. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Payam Piray & Nathaniel D. Daw, 2021. "A model for learning based on the joint estimation of stochasticity and volatility," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    9. Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Karl J Friston & Klaas E Stephan, 2010. "Observing the Observer (II): Deciding When to Decide," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-19, December.
    10. Benjamin Patrick Evans & Mikhail Prokopenko, 2021. "A maximum entropy model of bounded rational decision-making with prior beliefs and market feedback," Papers 2102.09180, arXiv.org, revised May 2021.
    11. Marie Devaine & Jean Daunizeau, 2017. "Learning about and from others' prudence, impatience or laziness: The computational bases of attitude alignment," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-28, March.
    12. Benjamin Skerritt-Davis & Mounya Elhilali, 2018. "Detecting change in stochastic sound sequences," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-24, May.
    13. Fabien Vinckier & Lionel Rigoux & Irma T Kurniawan & Chen Hu & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2019. "Sour grapes and sweet victories: How actions shape preferences," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-24, January.
    14. Jean Daunizeau & Kerstin Preuschoff & Karl Friston & Klaas Stephan, 2011. "Optimizing Experimental Design for Comparing Models of Brain Function," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-18, November.
    15. repec:plo:pcbi00:1008162 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amrei Lahno & Marta Serra-Garcia, 2015. "Peer effects in risk taking: Envy or conformity?," Journal of Risk and Uncertainty, Springer, vol. 50(1), pages 73-95, February.
    2. Ispano, Alessandro & Schwardmann, Peter, 2017. "Cooperating over losses and competing over gains: A social dilemma experiment," Games and Economic Behavior, Elsevier, vol. 105(C), pages 329-348.
    3. Antonides, Gerrit & Kroft, Maaike, 2005. "Fairness judgments in household decision making," Journal of Economic Psychology, Elsevier, vol. 26(6), pages 902-913, December.
    4. Oege Dijk, 2017. "For whom does social comparison induce risk-taking?," Theory and Decision, Springer, vol. 82(4), pages 519-541, April.
    5. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    6. Biao Luo & Chengyuan Wang & Tieshan Li, 2018. "Inequity-averse agents’ deserved concerns under the linear contract: a social network setting," Annals of Operations Research, Springer, vol. 268(1), pages 129-148, September.
    7. Yildiz, Özgür, 2014. "Lehren aus der Verhaltensökonomik für die Gestaltung umweltpolitischer Maßnahmen [Lessons from behavioral economics for the design of environmental policy measures]," MPRA Paper 59360, University Library of Munich, Germany.
    8. Khalmetski, Kiryl & Ockenfels, Axel & Werner, Peter, 2015. "Surprising gifts: Theory and laboratory evidence," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 163-208.
    9. Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
    10. Schmidt, Ulrich & Neyse, Levent & Aleknonyte, Milda, 2015. "Income inequality and risk taking," Kiel Working Papers 2000, Kiel Institute for the World Economy (IfW Kiel).
    11. El Harbi, Sana & Bekir, Insaf & Grolleau, Gilles & Sutan, Angela, 2015. "Efficiency, equality, positionality: What do people maximize? Experimental vs. hypothetical evidence from Tunisia," Journal of Economic Psychology, Elsevier, vol. 47(C), pages 77-84.
    12. Santiago Burone & Martin Leites, 2021. "Self-centered and non-self-centered inequality aversion matter: Evidence from Uruguay based on an experimental survey," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(2), pages 265-291, June.
    13. Amit Kothiyal & Vitalie Spinu & Peter Wakker, 2014. "An experimental test of prospect theory for predicting choice under ambiguity," Journal of Risk and Uncertainty, Springer, vol. 48(1), pages 1-17, February.
    14. Florian Heine & Martin Sefton, 2018. "To Tender or Not to Tender? Deliberate and Exogenous Sunk Costs in a Public Good Game," Games, MDPI, vol. 9(3), pages 1-28, June.
    15. Bodo Sturm & Joachim Weimann, 2006. "Experiments in Environmental Economics and Some Close Relatives," Journal of Economic Surveys, Wiley Blackwell, vol. 20(3), pages 419-457, July.
    16. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, March.
    17. Neckermann, Susanne & Yang, Xiaolan, 2017. "Understanding the (unexpected) consequences of unexpected recognition," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 131-142.
    18. Chen, Daniel L., 2016. "Tastes for Desert and Placation: A Reference Point-Dependent Model of Social Preferences," IAST Working Papers 16-60, Institute for Advanced Study in Toulouse (IAST).
    19. Kim, Duk Gyoo & Lim, Wooyoung, 2024. "Multilateral bargaining over the division of losses," Games and Economic Behavior, Elsevier, vol. 146(C), pages 59-76.
    20. Brosig-Koch, Jeannette & Griebenow, Malte & Kifmann, Mathias & Then, Franziska, 2022. "Rewards for information provision in patient referrals: A theoretical model and an experimental test," Journal of Health Economics, Elsevier, vol. 86(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0015554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.