IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0010689.html
   My bibliography  Save this article

A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes

Author

Listed:
  • Matthew L Aardema
  • Michael G Campana
  • Nicole E Wagner
  • Francisco C Ferreira
  • Dina M Fonseca

Abstract

Understanding patterns of diversification, genetic exchange, and pesticide resistance in arthropod disease vectors is necessary for effective population management. With the availability of next-generation sequencing technologies, one of the best approaches for surveying such patterns involves the simultaneous genotyping of many samples for a large number of genetic markers. To this end, the targeting of gene sequences of known function can be a cost-effective strategy. One insect group of substantial health concern are the mosquito taxa that make up the Culex pipiens complex. Members of this complex transmit damaging arboviruses and filariae worms to humans, as well as other pathogens such as avian malaria parasites that are detrimental to birds. Here we describe the development of a targeted, gene-based assay for surveying genetic diversity and population structure in this mosquito complex. To test the utility of this assay, we sequenced samples from several members of the complex, as well as from distinct populations of the relatively under-studied Culex quinquefasciatus. The data generated was then used to examine taxonomic divergence and population clustering between and within these mosquitoes. We also used this data to investigate genetic variants present in our samples that had previously been shown to correlate with insecticide-resistance. Broadly, our gene capture approach successfully enriched the genomic regions of interest, and proved effective for facilitating examinations of taxonomic divergence and geographic clustering within the Cx. pipiens complex. It also allowed us to successfully survey genetic variation associated with insecticide resistance in Culex mosquitoes. This enrichment protocol will be useful for future studies that aim to understand the genetic mechanisms underlying the evolution of these ubiquitous and increasingly damaging disease vectors.Author summary: The mosquito taxa that make up the Culex pipiens complex are important vectors of the agents of several human diseases such as West Nile and St. Louis encephalitides, and lymphatic filariasis. They are also important vectors of avian malaria, which impacts livestock and wildlife. The development of effective strategies for the control of these mosquitoes requires knowledge of their origins, distribution, dispersal patterns, and the extent to which discreet taxonomic entities within the complex interbreed. To achieve these objectives, it is necessary to compare patterns of genetic diversity across many mosquito samples, which can be cost-prohibitive. To address this limitation, we developed a targeted, gene-based assay that allowed us to cost-effectively genotype a large number of genetic variants from a representative global sampling of individual Cx. pipiens complex mosquitoes. We show that this assay is a powerful tool for examining genetic structure and hybridization among populations. We also explore its utility for surveying alleles previously shown to be associated with insecticide resistance. Future use of this enrichment assay and the bioinformatics methods described here will allow researchers to study evolutionary patterns across the Cx. pipiens complex as well as monitor the presence of genetic variation that could affect control efforts.

Suggested Citation

  • Matthew L Aardema & Michael G Campana & Nicole E Wagner & Francisco C Ferreira & Dina M Fonseca, 2022. "A gene-based capture assay for surveying patterns of genetic diversity and insecticide resistance in a worldwide group of invasive mosquitoes," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 16(8), pages 1-22, August.
  • Handle: RePEc:plo:pntd00:0010689
    DOI: 10.1371/journal.pntd.0010689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010689
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0010689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0010689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    2. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Beatrix Eugster & Rafael Lalive & Andreas Steinhauer & Josef Zweimüller, 2011. "The Demand for Social Insurance: Does Culture Matter?," Economic Journal, Royal Economic Society, vol. 121(556), pages 413-448, November.
    3. repec:plo:pgen00:1002410 is not listed on IDEAS
    4. Filippini, Massimo & Wekhof, Tobias, 2021. "The effect of culture on energy efficient vehicle ownership," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    5. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    6. Diana Dunca & Sandesh Chopade & María Gordillo-Marañón & Aroon D. Hingorani & Karoline Kuchenbaecker & Chris Finan & Amand F. Schmidt, 2024. "Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. repec:plo:pgen00:1002078 is not listed on IDEAS
    9. Pierre Luisi & Angelina García & Juan Manuel Berros & Josefina M B Motti & Darío A Demarchi & Emma Alfaro & Eliana Aquilano & Carina Argüelles & Sergio Avena & Graciela Bailliet & Julieta Beltramo & C, 2020. "Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    10. Brielin C Brown & Nicolas L Bray & Lior Pachter, 2018. "Expression reflects population structure," PLOS Genetics, Public Library of Science, vol. 14(12), pages 1-15, December.
    11. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    12. Beatrix Brügger & Rafael Lalive & Josef Zweimüller, 2009. "Does Culture Affect Unemployment? Evidence from the Röstigraben," NRN working papers 2009-10, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    13. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    14. Alejandro Ochoa & John D Storey, 2021. "Estimating FST and kinship for arbitrary population structures," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-36, January.
    15. Victor Ronda & Esben Agerbo & Dorthe Bleses & Preben Bo Mortensen & Anders Børglum & Ole Mors & Michael Rosholm & David M. Hougaard & Merete Nordentoft & Thomas Werge, 2022. "Family disadvantage, gender, and the returns to genetic human capital," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 550-578, April.
    16. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    17. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Bryson, Alex & Morris, Tim & Bann, David & Wilkinson, David, 2025. "The gender wage gap across life: Effects of genetic predisposition towards higher educational attainment," Economics & Human Biology, Elsevier, vol. 56(C).
    19. Nicola Barban & Elisabetta De Cao & Sonia Oreffice & Climent Quintana-Domeque, 2016. "Assortative Mating on Education: A Genetic Assessment," Working Papers 2016-034, Human Capital and Economic Opportunity Working Group.
    20. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    21. Athias, Laure & Wicht, Pascal, 2014. "Cultural Biases in Public Service Delivery: Evidence from a Regression Discontinuity Approach," MPRA Paper 60639, University Library of Munich, Germany.
    22. Oscar Lao & Fan Liu & Andreas Wollstein & Manfred Kayser, 2014. "GAGA: A New Algorithm for Genomic Inference of Geographic Ancestry Reveals Fine Level Population Substructure in Europeans," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0010689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.