Author
Listed:
- Daniëlle van Beekvelt
- Irene Garcia-Marti
- Jouke de Baar
Abstract
The pursue of a high resolution gridded climate data and weather forecast requires an unprecedented number of in situ near-surface observations to model the sub-mesoscale. National meteorological services (NMS) have practical and financial limitations to the number of observations it can collect, therefore, opening the door to crowdsourced weather initiatives might be an interesting option to mitigate data scarcity. In recent years, scientists have made remarkable efforts at assessing the quality of crowdsourced collections and determining ways these can add value to the “daily business” of NMS. In this work, we develop and apply a multi-fidelity spatial regression method capable of combining official observations with crowdsourced observations, which enables the creation of high-resolution interpolations of weather variables. The availability of a sheer volume of crowdsourced observations also poses questions on what is the maximum weather complexity that can be modelled with these novel data sources. We include a structured theoretical analysis simulating increasingly complex weather patterns that uses the Shannon-Nyquist limit as a benchmark. Results show that the combination of official and crowdsourced weather observations pushes further the Shannon-Nyquist limit, thus indicating that crowdsourced data contributes at monitoring sub-mesoscale weather processes (e.g. urban scales). We think that this effort illustrates well the potential of crowdsourced data, not only to expand the current range of products and services at NMS, but also opening the door for high-resolution weather forecast and monitoring, issuing local early warnings and advancing towards impact-based analyses.
Suggested Citation
Daniëlle van Beekvelt & Irene Garcia-Marti & Jouke de Baar, 2024.
"Towards high-resolution gridded climatology stemming from the combination of official and crowdsourced weather observations using multi-fidelity methods,"
PLOS Climate, Public Library of Science, vol. 3(1), pages 1-21, January.
Handle:
RePEc:plo:pclm00:0000216
DOI: 10.1371/journal.pclm.0000216
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pclm00:0000216. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: climate (email available below). General contact details of provider: https://journals.plos.org/climate .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.