IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010618.html
   My bibliography  Save this article

EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number

Author

Listed:
  • Oswaldo Gressani
  • Jacco Wallinga
  • Christian L Althaus
  • Niel Hens
  • Christel Faes

Abstract

In infectious disease epidemiology, the instantaneous reproduction number R t is a time-varying parameter defined as the average number of secondary infections generated by an infected individual at time t. It is therefore a crucial epidemiological statistic that assists public health decision makers in the management of an epidemic. We present a new Bayesian tool (EpiLPS) for robust estimation of the time-varying reproduction number. The proposed methodology smooths the epidemic curve and allows to obtain (approximate) point estimates and credible intervals of R t by employing the renewal equation, using Bayesian P-splines coupled with Laplace approximations of the conditional posterior of the spline vector. Two alternative approaches for inference are presented: (1) an approach based on a maximum a posteriori argument for the model hyperparameters, delivering estimates of R t in only a few seconds; and (2) an approach based on a Markov chain Monte Carlo (MCMC) scheme with underlying Langevin dynamics for efficient sampling of the posterior target distribution. Case counts per unit of time are assumed to follow a negative binomial distribution to account for potential overdispersion in the data that would not be captured by a classic Poisson model. Furthermore, after smoothing the epidemic curve, a “plug-in’’ estimate of the reproduction number can be obtained from the renewal equation yielding a closed form expression of R t as a function of the spline parameters. The approach is extremely fast and free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003), influenza A H1N1 (2009) in the USA and on the SARS-CoV-2 pandemic (2020-2021) for Belgium, Portugal, Denmark and France.Author summary: The instantaneous reproduction number R t is a key statistic that provides important insights into an epidemic outbreak as it informs about the average number of secondary infections engendered by an infectious agent. We present a flexible Bayesian approach called EpiLPS (Epidemiological modeling with Laplacian-P-Splines) for efficient estimation of the epidemic curve and R t based on daily case count data and the serial interval distribution. Computational speed and absence of arbitrary assumptions on smoothing makes EpiLPS an interesting tool for estimation of the reproduction number. Our methodology is validated through different simulation scenarios by using the associated R software package (https://cran.r-project.org/package=EpiLPS). We also demonstrate the use of EpiLPS on real data from two historical outbreaks and on the SARS-CoV-2 pandemic.

Suggested Citation

  • Oswaldo Gressani & Jacco Wallinga & Christian L Althaus & Niel Hens & Christel Faes, 2022. "EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-27, October.
  • Handle: RePEc:plo:pcbi00:1010618
    DOI: 10.1371/journal.pcbi.1010618
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010618
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010618&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-Yu Zhang & Lan-Lan Yu & Wei-Yi Wang & Gui-Quan Sun & Jian-Cheng Lv & Tao Zhou & Quan-Hui Liu, 2024. "Estimating the time-varying effective reproduction number via Cycle Threshold-based Transformer," PLOS Computational Biology, Public Library of Science, vol. 20(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    2. Elisabeth K Brockhaus & Daniel Wolffram & Tanja Stadler & Michael Osthege & Tanmay Mitra & Jonas M Littek & Ekaterina Krymova & Anna J Klesen & Jana S Huisman & Stefan Heyder & Laura M Helleckes & Mat, 2023. "Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany," PLOS Computational Biology, Public Library of Science, vol. 19(11), pages 1-27, November.
    3. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
    5. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Palatella, Luigi & Vanni, Fabio & Lambert, David, 2021. "A phenomenological estimate of the true scale of CoViD-19 from primary data," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    8. Diana Rose E. Ranoa & Robin L. Holland & Fadi G. Alnaji & Kelsie J. Green & Leyi Wang & Richard L. Fredrickson & Tong Wang & George N. Wong & Johnny Uelmen & Sergei Maslov & Zachary J. Weiner & Alexei, 2022. "Mitigation of SARS-CoV-2 transmission at a large public university," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Bradley S Price & Maryam Khodaverdi & Adam Halasz & Brian Hendricks & Wesley Kimble & Gordon S Smith & Sally L Hodder, 2021. "Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    10. Dominic P. Brass & Christina A. Cobbold & Bethan V. Purse & David A. Ewing & Amanda Callaghan & Steven M. White, 2024. "Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Massimo Bilancia & Domenico Vitale & Fabio Manca & Paola Perchinunno & Luigi Santacroce, 2024. "A dynamic causal modeling of the second outbreak of COVID-19 in Italy," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 1-30, March.
    12. Wang, Xiangrong & Hou, Hongru & Lu, Dan & Wu, Zongze & Moreno, Yamir, 2024. "Unveiling the reproduction number scaling in characterizing social contagion coverage," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    14. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    15. Yee Whye Teh & Bryn Elesedy & Bobby He & Michael Hutchinson & Sheheryar Zaidi & Avishkar Bhoopchand & Ulrich Paquet & Nenad Tomasev & Jonathan Read & Peter J. Diggle, 2022. "Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an application to mapping and nowcasting the Covid‐19 epidemic in British local authorities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 65-85, November.
    16. Yun Lin & Bingyi Yang & Sarah Cobey & Eric H. Y. Lau & Dillon C. Adam & Jessica Y. Wong & Helen S. Bond & Justin K. Cheung & Faith Ho & Huizhi Gao & Sheikh Taslim Ali & Nancy H. L. Leung & Tim K. Tsan, 2022. "Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Adrian Lison & Sam Abbott & Jana Huisman & Tanja Stadler, 2024. "Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates," PLOS Computational Biology, Public Library of Science, vol. 20(4), pages 1-32, April.
    18. Amanda C. Perofsky & Chelsea L. Hansen & Roy Burstein & Shanda Boyle & Robin Prentice & Cooper Marshall & David Reinhart & Ben Capodanno & Melissa Truong & Kristen Schwabe-Fry & Kayla Kuchta & Brian P, 2024. "Impacts of human mobility on the citywide transmission dynamics of 18 respiratory viruses in pre- and post-COVID-19 pandemic years," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Publio Darío Cortés-Carvajal & Mitzi Cubilla-Montilla & David Ricardo González-Cortés, 2022. "Estimation of the Instantaneous Reproduction Number and Its Confidence Interval for Modeling the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(2), pages 1-30, January.
    20. Hyukpyo Hong & Eunjin Eom & Hyojung Lee & Sunhwa Choi & Boseung Choi & Jae Kyoung Kim, 2024. "Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.