IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012021.html
   My bibliography  Save this article

Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates

Author

Listed:
  • Adrian Lison
  • Sam Abbott
  • Jana Huisman
  • Tanja Stadler

Abstract

The time-varying effective reproduction number Rt is a widely used indicator of transmission dynamics during infectious disease outbreaks. Timely estimates of Rt can be obtained from reported cases counted by their date of symptom onset, which is generally closer to the time of infection than the date of report. Case counts by date of symptom onset are typically obtained from line list data, however these data can have missing information and are subject to right truncation. Previous methods have addressed these problems independently by first imputing missing onset dates, then adjusting truncated case counts, and finally estimating the effective reproduction number. This stepwise approach makes it difficult to propagate uncertainty and can introduce subtle biases during real-time estimation due to the continued impact of assumptions made in previous steps. In this work, we integrate imputation, truncation adjustment, and Rt estimation into a single generative Bayesian model, allowing direct joint inference of case counts and Rt from line list data with missing symptom onset dates. We then use this framework to compare the performance of nowcasting approaches with different stepwise and generative components on synthetic line list data for multiple outbreak scenarios and across different epidemic phases. We find that under reporting delays realistic for hospitalization data (50% of reports delayed by more than a week), intermediate smoothing, as is common practice in stepwise approaches, can bias nowcasts of case counts and Rt, which is avoided in a joint generative approach due to shared regularization of all model components. On incomplete line list data, a fully generative approach enables the quantification of uncertainty due to missing onset dates without the need for an initial multiple imputation step. In a real-world comparison using hospitalization line list data from the COVID-19 pandemic in Switzerland, we observe the same qualitative differences between approaches. The generative modeling components developed in this work have been integrated and further extended in the R package epinowcast, providing a flexible and interpretable tool for real-time surveillance.Author summary: During an infectious disease outbreak, public health authorities require timely indicators of transmission dynamics, such as the effective reproduction number Rt. Since reporting data are delayed and often incomplete, statistical methods must be employed to obtain real-time estimates of case numbers and Rt. Existing methods involve separate steps for imputing missing data, adjusting for reporting delays, and estimating Rt. This stepwise approach impedes uncertainty quantification and can lead to inconsistent smoothing assumptions across steps. In this paper, we propose an alternative approach based on generative Bayesian modeling which integrates all steps into a single nowcasting model that can be directly fit to observed data. Using synthetic and real-world line list data, we demonstrate that the generative approach better captures uncertainty and avoids bias from inconsistent assumptions. The model components of our approach have been integrated into the R package epinowcast for easy use in practice.

Suggested Citation

  • Adrian Lison & Sam Abbott & Jana Huisman & Tanja Stadler, 2024. "Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates," PLOS Computational Biology, Public Library of Science, vol. 20(4), pages 1-32, April.
  • Handle: RePEc:plo:pcbi00:1012021
    DOI: 10.1371/journal.pcbi.1012021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012021
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    2. Elisabeth K Brockhaus & Daniel Wolffram & Tanja Stadler & Michael Osthege & Tanmay Mitra & Jonas M Littek & Ekaterina Krymova & Anna J Klesen & Jana S Huisman & Stefan Heyder & Laura M Helleckes & Mat, 2023. "Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany," PLOS Computational Biology, Public Library of Science, vol. 19(11), pages 1-27, November.
    3. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
    5. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Palatella, Luigi & Vanni, Fabio & Lambert, David, 2021. "A phenomenological estimate of the true scale of CoViD-19 from primary data," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    8. Diana Rose E. Ranoa & Robin L. Holland & Fadi G. Alnaji & Kelsie J. Green & Leyi Wang & Richard L. Fredrickson & Tong Wang & George N. Wong & Johnny Uelmen & Sergei Maslov & Zachary J. Weiner & Alexei, 2022. "Mitigation of SARS-CoV-2 transmission at a large public university," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Bradley S Price & Maryam Khodaverdi & Adam Halasz & Brian Hendricks & Wesley Kimble & Gordon S Smith & Sally L Hodder, 2021. "Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    10. Dominic P. Brass & Christina A. Cobbold & Bethan V. Purse & David A. Ewing & Amanda Callaghan & Steven M. White, 2024. "Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Massimo Bilancia & Domenico Vitale & Fabio Manca & Paola Perchinunno & Luigi Santacroce, 2024. "A dynamic causal modeling of the second outbreak of COVID-19 in Italy," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 1-30, March.
    12. Wang, Xiangrong & Hou, Hongru & Lu, Dan & Wu, Zongze & Moreno, Yamir, 2024. "Unveiling the reproduction number scaling in characterizing social contagion coverage," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    14. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    15. Yee Whye Teh & Bryn Elesedy & Bobby He & Michael Hutchinson & Sheheryar Zaidi & Avishkar Bhoopchand & Ulrich Paquet & Nenad Tomasev & Jonathan Read & Peter J. Diggle, 2022. "Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an application to mapping and nowcasting the Covid‐19 epidemic in British local authorities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 65-85, November.
    16. Yun Lin & Bingyi Yang & Sarah Cobey & Eric H. Y. Lau & Dillon C. Adam & Jessica Y. Wong & Helen S. Bond & Justin K. Cheung & Faith Ho & Huizhi Gao & Sheikh Taslim Ali & Nancy H. L. Leung & Tim K. Tsan, 2022. "Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Amanda C. Perofsky & Chelsea L. Hansen & Roy Burstein & Shanda Boyle & Robin Prentice & Cooper Marshall & David Reinhart & Ben Capodanno & Melissa Truong & Kristen Schwabe-Fry & Kayla Kuchta & Brian P, 2024. "Impacts of human mobility on the citywide transmission dynamics of 18 respiratory viruses in pre- and post-COVID-19 pandemic years," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Publio Darío Cortés-Carvajal & Mitzi Cubilla-Montilla & David Ricardo González-Cortés, 2022. "Estimation of the Instantaneous Reproduction Number and Its Confidence Interval for Modeling the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(2), pages 1-30, January.
    19. Hyukpyo Hong & Eunjin Eom & Hyojung Lee & Sunhwa Choi & Boseung Choi & Jae Kyoung Kim, 2024. "Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Kimberly M. Fornace & Hillary M. Topazian & Isobel Routledge & Syafie Asyraf & Jenarun Jelip & Kim A. Lindblade & Mohammad Saffree Jeffree & Pablo Ruiz Cuenca & Samir Bhatt & Kamruddin Ahmed & Azra C., 2023. "No evidence of sustained nonzoonotic Plasmodium knowlesi transmission in Malaysia from modelling malaria case data," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.