IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is1ps131-s142.html
   My bibliography  Save this article

Assessing the effect of school closures on the spread of COVID‐19 in Zurich

Author

Listed:
  • Maria Bekker‐Nielsen Dunbar
  • Felix Hofmann
  • Leonhard Held
  • the SUSPend modelling consortium

Abstract

The effect of school closure on the spread of COVID‐19 has been discussed intensively in the literature and the news. To capture the interdependencies between children and adults, we consider daily age‐stratified incidence data and contact patterns between age groups which change over time to reflect social distancing policy indicators. We fit a multivariate time‐series endemic–epidemic model to such data from the Canton of Zurich, Switzerland and use the model to predict the age‐specific incidence in a counterfactual approach (with and without school closures). The results indicate a 17% median increase of incidence in the youngest age group (0–14 year olds), whereas the relative increase in the other age groups drops to values between 2% and 3%. We argue that our approach is more informative to policy makers than summarising the effect of school closures with time‐dependent effective reproduction numbers, which are difficult to estimate due to the sparsity of incidence counts within the relevant age groups.

Suggested Citation

  • Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s131-s142
    DOI: 10.1111/rssa.12910
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12910
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    2. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    3. B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
    4. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisabeth K Brockhaus & Daniel Wolffram & Tanja Stadler & Michael Osthege & Tanmay Mitra & Jonas M Littek & Ekaterina Krymova & Anna J Klesen & Jana S Huisman & Stefan Heyder & Laura M Helleckes & Mat, 2023. "Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany," PLOS Computational Biology, Public Library of Science, vol. 19(11), pages 1-27, November.
    2. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. repec:plo:pcbi00:1003312 is not listed on IDEAS
    4. Palatella, Luigi & Vanni, Fabio & Lambert, David, 2021. "A phenomenological estimate of the true scale of CoViD-19 from primary data," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    6. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    7. repec:plo:pone00:0074208 is not listed on IDEAS
    8. Bradley S Price & Maryam Khodaverdi & Adam Halasz & Brian Hendricks & Wesley Kimble & Gordon S Smith & Sally L Hodder, 2021. "Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    9. Maria Victoria Ibañez & Marina Martínez-Garcia & Amelia Simó, 2021. "A Review of Spatiotemporal Models for Count Data in R Packages. A Case Study of COVID-19 Data," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
    10. Dominic P. Brass & Christina A. Cobbold & Bethan V. Purse & David A. Ewing & Amanda Callaghan & Steven M. White, 2024. "Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Massimo Bilancia & Domenico Vitale & Fabio Manca & Paola Perchinunno & Luigi Santacroce, 2024. "A dynamic causal modeling of the second outbreak of COVID-19 in Italy," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 1-30, March.
    12. Wang, Xiangrong & Hou, Hongru & Lu, Dan & Wu, Zongze & Moreno, Yamir, 2024. "Unveiling the reproduction number scaling in characterizing social contagion coverage," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    14. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    15. H. J. Whitaker & C. P. Farrington, 2004. "Infections with Varying Contact Rates: Application to Varicella," Biometrics, The International Biometric Society, vol. 60(3), pages 615-623, September.
    16. repec:plo:pcbi00:1006211 is not listed on IDEAS
    17. Caroline Chuard & Hannes Schwandt & Alexander D. Becker & Masahiko Haraguchi, 2022. "Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination," NBER Working Papers 30202, National Bureau of Economic Research, Inc.
    18. Yun Lin & Bingyi Yang & Sarah Cobey & Eric H. Y. Lau & Dillon C. Adam & Jessica Y. Wong & Helen S. Bond & Justin K. Cheung & Faith Ho & Huizhi Gao & Sheikh Taslim Ali & Nancy H. L. Leung & Tim K. Tsan, 2022. "Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: Network effects and optimal lockdowns," Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
    20. Lahey, Joanna N. & Wanamaker, Marianne H., 2025. "Effects of restrictive abortion legislation on cohort mortality evidence from 19th century law variation," Journal of Public Economics, Elsevier, vol. 243(C).
    21. Victor Zakharov & Yulia Balykina & Igor Ilin & Andrea Tick, 2022. "Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    22. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    23. Mikael Jagan & Michelle S deJonge & Olga Krylova & David J D Earn, 2020. "Fast estimation of time-varying infectious disease transmission rates," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-39, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s131-s142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.