IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is1ps158-s164.html
   My bibliography  Save this article

Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion

Author

Listed:
  • Maria Bekker‐Nielsen Dunbar
  • Felix Hofmann
  • Leonhard Held

Abstract

No abstract is available for this item.

Suggested Citation

  • Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s158-s164
    DOI: 10.1111/rssa.12985
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12985
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Chambers, 2019. "What’s next for Registered Reports?," Nature, Nature, vol. 573(7773), pages 187-189, September.
    2. Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
    3. Leonhard Knorr‐Held & Sylvia Richardson, 2003. "A hierarchical model for space–time surveillance data on meningococcal disease incidence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 169-183, May.
    4. Dennis M. Feehan & Ayesha S. Mahmud, 2021. "Quantifying population contact patterns in the United States during the COVID-19 pandemic," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Olivera Stojanović & Johannes Leugering & Gordon Pipa & Stéphane Ghozzi & Alexander Ullrich, 2019. "A Bayesian Monte Carlo approach for predicting the spread of infectious diseases," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    6. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    3. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2018. "A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    4. Konrad, Renata A. & Trapp, Andrew C. & Palmbach, Timothy M. & Blom, Jeffrey S., 2017. "Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications," European Journal of Operational Research, Elsevier, vol. 259(2), pages 733-745.
    5. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    6. Shaun R. Seaman & Pantelis Samartsidis & Meaghan Kall & Daniela De Angelis, 2022. "Nowcasting COVID‐19 deaths in England by age and region," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1266-1281, November.
    7. Kernel Prieto, 2022. "Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
    8. Uzi Rebhun & David L. Brown, 2025. "The COVID-19 Pandemic in the United States: Who Moved, Why, and Where?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 44(1), pages 1-37, February.
    9. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    10. Adriana Manna & Júlia Koltai & Márton Karsai, 2024. "Importance of social inequalities to contact patterns, vaccine uptake, and epidemic dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Dramane Sam Idris Kanté & Aissam Jebrane & Anass Bouchnita & Abdelilah Hakim, 2023. "Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    12. Mirko Armillotta & Konstantinos Fokianos, 2024. "Count network autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 584-612, July.
    13. Paul J. Ferraro & Pallavi Shukla, 2023. "Credibility crisis in agricultural economics," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1275-1291, September.
    14. Kalyani Devendra Jagtap & Kundan Kandhway, 2025. "Trading-off lives and livelihood: optimal lockdown policy in a unified epidemic and economic framework," OPSEARCH, Springer;Operational Research Society of India, vol. 62(2), pages 725-771, June.
    15. Unchitta Kan & Jericho McLeod & Eduardo López, 2024. "Non-coresident family as a driver of migration change in a crisis: the case of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    16. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
    17. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
    18. Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    19. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    20. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s158-s164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.