IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i3p736-744.html
   My bibliography  Save this article

Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases

Author

Listed:
  • Birgit Schrödle
  • Leonhard Held
  • Håvard Rue

Abstract

No abstract is available for this item.

Suggested Citation

  • Birgit Schrödle & Leonhard Held & Håvard Rue, 2012. "Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases," Biometrics, The International Biometric Society, vol. 68(3), pages 736-744, September.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:736-744
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01717.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    2. Christopher Wikle & Mevin Hooten, 2010. "Rejoinder on: A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 466-468, November.
    3. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. Leonhard Knorr‐Held & Sylvia Richardson, 2003. "A hierarchical model for space–time surveillance data on meningococcal disease incidence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 169-183, May.
    6. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    7. Chib, Siddhartha & Greenberg, Edward & Winkelmann, Rainer, 1998. "Posterior simulation and Bayes factors in panel count data models," Journal of Econometrics, Elsevier, vol. 86(1), pages 33-54, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoletta D’Angelo & Antonino Abbruzzo & Giada Adelfio, 2021. "Spatio-Temporal Spread Pattern of COVID-19 in Italy," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    2. Jose Angulo & Hwa-Lung Yu & Andrea Langousis & Alexander Kolovos & Jinfeng Wang & Ana Esther Madrid & George Christakos, 2013. "Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    4. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    5. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    6. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    7. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    8. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
    9. Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
    10. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    11. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    12. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    13. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    14. Moritz Berger & Gerhard Tutz, 2021. "Transition models for count data: a flexible alternative to fixed distribution models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1259-1283, October.
    15. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    16. Matthew Bonas & Christopher K. Wikle & Stefano Castruccio, 2024. "Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    17. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    18. Rossi, Barbara & Ganics, Gergely & Sekhposyan, Tatevik, 2020. "From Fixed-event to Fixed-horizon Density Forecasts: Obtaining Measures of Multi-horizon Uncertainty from Survey Density Foreca," CEPR Discussion Papers 14267, C.E.P.R. Discussion Papers.
    19. Huang Huang & Stefano Castruccio & Marc G. Genton, 2022. "Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 449-466, March.
    20. Sondre Hølleland & Hans Arnfinn Karlsen, 2020. "A Stationary Spatio‐Temporal GARCH Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 177-209, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:736-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.