IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011653.html
   My bibliography  Save this article

Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany

Author

Listed:
  • Elisabeth K Brockhaus
  • Daniel Wolffram
  • Tanja Stadler
  • Michael Osthege
  • Tanmay Mitra
  • Jonas M Littek
  • Ekaterina Krymova
  • Anna J Klesen
  • Jana S Huisman
  • Stefan Heyder
  • Laura M Helleckes
  • Matthias an der Heiden
  • Sebastian Funk
  • Sam Abbott
  • Johannes Bracher

Abstract

The effective reproductive number Rt has taken a central role in the scientific, political, and public discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely published. Disagreement between estimates can be substantial and may lead to confusion among decision-makers and the general public. In this work, we compare different estimates of the national-level effective reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between estimates from the same method but published at different time points (within-method agreement) as well as retrospective agreement across eight different approaches (between-method agreement). Concerning the former, estimates from some methods are very stable over time and hardly subject to revisions, while others display considerable fluctuations. To evaluate between-method agreement, we reproduce the estimates generated by different groups using a variety of statistical approaches, standardizing analytical choices to assess how they contribute to the observed disagreement. These analytical choices include the data source, data pre-processing, assumed generation time distribution, statistical tuning parameters, and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt may affect results at least as strongly as the selection of the statistical approach. They should thus be communicated transparently along with the estimates.Author summary: The effective reproductive number describes how many new infections an individual infected with a given disease causes on average in a population which is subject to a certain degree of immunity and intervention measures. Public health agencies and researchers commonly attempt to keep track of its value over time using various data sources and statistical methods. In this work we compare estimates produced by different research groups in a case study on COVID-19 in Germany. We find pronounced differences between different estimates and shed light on how these are shaped by varying analytical choices. Our results indicate that the employed statistical method has some influence on results, but surrounding analytical choices including epidemiological parameterizations and tuning parameter choices are at least as influential. As estimates are subject to regular updates, we moreover assess how strongly real-time estimates based on different methods were revised retrospectively. While for some methods hardly any retrospective changes occurred, for others there were strong revisions, often incoherent with the uncertainty intervals provided for previous estimates. Our results will be helpful for analysts aiming to set up estimation schemes for the effective reproductive number, and for users confronted with a multitude of potentially disagreeing estimates.

Suggested Citation

  • Elisabeth K Brockhaus & Daniel Wolffram & Tanja Stadler & Michael Osthege & Tanmay Mitra & Jonas M Littek & Ekaterina Krymova & Anna J Klesen & Jana S Huisman & Stefan Heyder & Laura M Helleckes & Mat, 2023. "Why are different estimates of the effective reproductive number so different? A case study on COVID-19 in Germany," PLOS Computational Biology, Public Library of Science, vol. 19(11), pages 1-27, November.
  • Handle: RePEc:plo:pcbi00:1011653
    DOI: 10.1371/journal.pcbi.1011653
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011653
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011653&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    2. Eric-Jan Wagenmakers & Alexandra Sarafoglou & Balazs Aczel, 2022. "One statistical analysis must not rule them all," Nature, Nature, vol. 605(7910), pages 423-425, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    2. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
    4. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Palatella, Luigi & Vanni, Fabio & Lambert, David, 2021. "A phenomenological estimate of the true scale of CoViD-19 from primary data," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    7. Kazuki Sakakura & Naoto Kuroda & Masaki Sonoda & Takumi Mitsuhashi & Ethan Firestone & Aimee F. Luat & Neena I. Marupudi & Sandeep Sood & Eishi Asano, 2023. "Developmental atlas of phase-amplitude coupling between physiologic high-frequency oscillations and slow waves," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Diana Rose E. Ranoa & Robin L. Holland & Fadi G. Alnaji & Kelsie J. Green & Leyi Wang & Richard L. Fredrickson & Tong Wang & George N. Wong & Johnny Uelmen & Sergei Maslov & Zachary J. Weiner & Alexei, 2022. "Mitigation of SARS-CoV-2 transmission at a large public university," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Bradley S Price & Maryam Khodaverdi & Adam Halasz & Brian Hendricks & Wesley Kimble & Gordon S Smith & Sally L Hodder, 2021. "Predicting increases in COVID-19 incidence to identify locations for targeted testing in West Virginia: A machine learning enhanced approach," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    10. Dominic P. Brass & Christina A. Cobbold & Bethan V. Purse & David A. Ewing & Amanda Callaghan & Steven M. White, 2024. "Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Massimo Bilancia & Domenico Vitale & Fabio Manca & Paola Perchinunno & Luigi Santacroce, 2024. "A dynamic causal modeling of the second outbreak of COVID-19 in Italy," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 1-30, March.
    12. Wang, Xiangrong & Hou, Hongru & Lu, Dan & Wu, Zongze & Moreno, Yamir, 2024. "Unveiling the reproduction number scaling in characterizing social contagion coverage," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    14. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    15. Yee Whye Teh & Bryn Elesedy & Bobby He & Michael Hutchinson & Sheheryar Zaidi & Avishkar Bhoopchand & Ulrich Paquet & Nenad Tomasev & Jonathan Read & Peter J. Diggle, 2022. "Efficient Bayesian inference of instantaneous reproduction numbers at fine spatial scales, with an application to mapping and nowcasting the Covid‐19 epidemic in British local authorities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 65-85, November.
    16. Yun Lin & Bingyi Yang & Sarah Cobey & Eric H. Y. Lau & Dillon C. Adam & Jessica Y. Wong & Helen S. Bond & Justin K. Cheung & Faith Ho & Huizhi Gao & Sheikh Taslim Ali & Nancy H. L. Leung & Tim K. Tsan, 2022. "Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Adrian Lison & Sam Abbott & Jana Huisman & Tanja Stadler, 2024. "Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates," PLOS Computational Biology, Public Library of Science, vol. 20(4), pages 1-32, April.
    18. Felix Holzmeister & Magnus Johannesson & Robert Böhm & Anna Dreber & Jürgen Huber & Michael Kirchler, 2023. "Heterogeneity in effect size estimates: Empirical evidence and practical implications," Working Papers 2023-17, Faculty of Economics and Statistics, Universität Innsbruck.
    19. Amanda C. Perofsky & Chelsea L. Hansen & Roy Burstein & Shanda Boyle & Robin Prentice & Cooper Marshall & David Reinhart & Ben Capodanno & Melissa Truong & Kristen Schwabe-Fry & Kayla Kuchta & Brian P, 2024. "Impacts of human mobility on the citywide transmission dynamics of 18 respiratory viruses in pre- and post-COVID-19 pandemic years," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Publio Darío Cortés-Carvajal & Mitzi Cubilla-Montilla & David Ricardo González-Cortés, 2022. "Estimation of the Instantaneous Reproduction Number and Its Confidence Interval for Modeling the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(2), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.