IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005866.html
   My bibliography  Save this article

Genetic drift and selection in many-allele range expansions

Author

Listed:
  • Bryan T Weinstein
  • Maxim O Lavrentovich
  • Wolfram Möbius
  • Andrew W Murray
  • David R Nelson

Abstract

We experimentally and numerically investigate the evolutionary dynamics of four competing strains of E. coli with differing expansion velocities in radially expanding colonies. We compare experimental measurements of the average fraction, correlation functions between strains, and the relative rates of genetic domain wall annihilations and coalescences to simulations modeling the population as a one-dimensional ring of annihilating and coalescing random walkers with deterministic biases due to selection. The simulations reveal that the evolutionary dynamics can be collapsed onto master curves governed by three essential parameters: (1) an expansion length beyond which selection dominates over genetic drift; (2) a characteristic angular correlation describing the size of genetic domains; and (3) a dimensionless constant quantifying the interplay between a colony’s curvature at the frontier and its selection length scale. We measure these parameters with a new technique that precisely measures small selective differences between spatially competing strains and show that our simulations accurately predict the dynamics without additional fitting. Our results suggest that the random walk model can act as a useful predictive tool for describing the evolutionary dynamics of range expansions composed of an arbitrary number of genotypes with different fitnesses.Author summary: Population expansions occur naturally during the spread of invasive species and have played a role in our evolutionary history when humans migrated out of Africa. We use a colony of non-motile bacteria expanding into unoccupied, nutrient-rich territory on an agar plate as a model system to explore how an expanding population’s spatial structure impacts its evolutionary dynamics. Spatial structure is present in expanding microbial colonies because daughter cells migrate only a small distance away from their mothers each generation. Generally, the constituents of expansions occurring in nature and in the lab have different genetic compositions (genotypes, or alleles if a single gene differs), each instilling different fitnesses, which compete to proliferate at the frontier. Here, we show that a random-walk model can accurately predict the dynamics of four expanding strains of E. coli with different fitnesses; each strain represents a competing allele. Our results can be extended to describe any number of competing genotypes with different fitnesses in a naturally occurring expansion as long as the underlying motility of the organisms does not cause our model to break down. Our model can also be used to precisely measure small selective differences between spatially competing genotypes in controlled laboratory settings.

Suggested Citation

  • Bryan T Weinstein & Maxim O Lavrentovich & Wolfram Möbius & Andrew W Murray & David R Nelson, 2017. "Genetic drift and selection in many-allele range expansions," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-31, December.
  • Handle: RePEc:plo:pcbi00:1005866
    DOI: 10.1371/journal.pcbi.1005866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005866
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin L. Phillips & Gregory P. Brown & Jonathan K. Webb & Richard Shine, 2006. "Invasion and the evolution of speed in toads," Nature, Nature, vol. 439(7078), pages 803-803, February.
    2. Alan Templeton, 2002. "Out of Africa again and again," Nature, Nature, vol. 416(6876), pages 45-51, March.
    3. Lavrentovich, Maxim O. & Nelson, David R., 2015. "Survival probabilities at spherical frontiers," Theoretical Population Biology, Elsevier, vol. 102(C), pages 26-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serhii Aif & Nico Appold & Lucas Kampman & Oskar Hallatschek & Jona Kayser, 2022. "Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
    2. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    3. Boone, C.A.J.J. & van Witteloostuijn, A. & van Olffen, W. & de Brabander, B., 2003. "The Genesis of top management team diversity : selective turnover among top management teams in the Dutch newspaper publisher industry (1970-1994)," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Bryant, Adam S. & Lavrentovich, Maxim O., 2022. "Survival in branching cellular populations," Theoretical Population Biology, Elsevier, vol. 144(C), pages 13-23.
    5. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez & Eva Ramos-Ábalos, 2020. "Stochastic Square of the Brennan-Schwartz Diffusion Process: Statistical Computation and Application," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 455-476, June.
    6. Kuparinen, Anna & Schurr, Frank M., 2007. "A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: Application to gene flow from transgenic forests," Ecological Modelling, Elsevier, vol. 202(3), pages 476-486.
    7. Cécile Berthouly-Salazar & Berndt J van Rensburg & Johannes J Le Roux & Bettine J van Vuuren & Cang Hui, 2012. "Spatial Sorting Drives Morphological Variation in the Invasive Bird, Acridotheris tristis," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    8. Boone, Christophe & Olffen, Woody,van & Witteloostuijn, Arjen,van, 2003. "The genesis of top management team diversity : selective Turnover among Top Management Teams in the Dutch Newspaper Publisher Industry (1970-1994)," Research Memorandum 036, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.
    10. Victor Zitian Chen & John Cantwell, 2022. "An evolutionary view of institutional complexity," Journal of Evolutionary Economics, Springer, vol. 32(3), pages 1071-1090, July.
    11. Jennifer Atchison, 2015. "Experiments in co-existence: the science and practices of biocontrol in invasive species management," Environment and Planning A, , vol. 47(8), pages 1697-1712, August.
    12. Mirrahimi, Sepideh & Raoul, Gaël, 2013. "Dynamics of sexual populations structured by a space variable and a phenotypical trait," Theoretical Population Biology, Elsevier, vol. 84(C), pages 87-103.
    13. Xie, Youxiang & Wang, Linjun & Deng, Qicheng & Wu, Zhengjia, 2017. "The dynamics of an impulsive predator–prey model with communicable disease in the prey species only," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 320-335.
    14. David A. Newell & Margaret M. Pembroke & William E. Boyd, 2012. "Crowd Sourcing for Conservation: Web 2.0 a Powerful Tool for Biologists," Future Internet, MDPI, vol. 4(2), pages 1-12, May.
    15. Justin M J Travis & Stephen C F Palmer & Steven Coyne & Alexandre Millon & Xavier Lambin, 2013. "Evolution of Predator Dispersal in Relation to Spatio-Temporal Prey Dynamics: How Not to Get Stuck in the Wrong Place!," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.