IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v148y2022icp11-21.html
   My bibliography  Save this article

Theoretical analysis of principal components in an umbrella model of intraspecific evolution

Author

Listed:
  • Estavoyer, Maxime
  • François, Olivier

Abstract

Principal component analysis (PCA) is one of the most frequently-used approach to describe population structure from multilocus genotype data. Regarding geographic range expansions of modern humans, interpretations of PCA have, however, been questioned, as there is uncertainty about the wave-like patterns that have been observed in principal components. It has indeed been argued that wave-like patterns are mathematical artifacts that arise generally when PCA is applied to data in which genetic differentiation increases with geographic distance. Here, we present an alternative theory for the observation of wave-like patterns in PCA. We study a coalescent model – the umbrella model – for the diffusion of genetic variants. The model is based on genetic drift without any particular geographical structure. In the umbrella model, splits from an ancestral population occur almost continuously in time, giving birth to small daughter populations at a regular pace. Our results provide detailed mathematical descriptions of eigenvalues and eigenvectors for the PCA of sampled genomic sequences under the model. When variants uniquely represented in the sample are removed, the PCA eigenvectors are defined as cosine functions of increasing periodicity, reproducing wave-like patterns observed in equilibrium isolation-by-distance models. Including singleton variants in the analysis, the eigenvectors corresponding to the largest eigenvalues exhibit complex wave shapes. The accuracy of our predictions is further investigated with coalescent simulations. Our analysis supports the hypothesis that highly structured wave-like patterns could arise from genetic drift only, and may not always be artificial outcomes of spatially structured data. Genomic data related to the peopling of the Americas are reanalyzed in the light of our new theory.

Suggested Citation

  • Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
  • Handle: RePEc:eee:thpobi:v:148:y:2022:i:c:p:11-21
    DOI: 10.1016/j.tpb.2022.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580922000521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2022.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swapan Mallick & Heng Li & Mark Lipson & Iain Mathieson & Melissa Gymrek & Fernando Racimo & Mengyao Zhao & Niru Chennagiri & Susanne Nordenfelt & Arti Tandon & Pontus Skoglund & Iosif Lazaridis & Sri, 2016. "The Simons Genome Diversity Project: 300 genomes from 142 diverse populations," Nature, Nature, vol. 538(7624), pages 201-206, October.
    2. Olivier François & Flora Jay, 2020. "Factor analysis of ancient population genomic samples," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Duforet-Frebourg, Nicolas & Slatkin, Montgomery, 2016. "Isolation-by-distance-and-time in a stepping-stone model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 24-35.
    4. Benjamin L. Phillips & Gregory P. Brown & Jonathan K. Webb & Richard Shine, 2006. "Invasion and the evolution of speed in toads," Nature, Nature, vol. 439(7078), pages 803-803, February.
    5. Daniel J. Lawson & Lucy van Dorp & Daniel Falush, 2018. "A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    6. Pavel Flegontov & N. Ezgi Altınışık & Piya Changmai & Nadin Rohland & Swapan Mallick & Nicole Adamski & Deborah A. Bolnick & Nasreen Broomandkhoshbacht & Francesca Candilio & Brendan J. Culleton & Olg, 2019. "Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America," Nature, Nature, vol. 570(7760), pages 236-240, June.
    7. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    8. Gil McVean, 2009. "A Genealogical Interpretation of Principal Components Analysis," PLOS Genetics, Public Library of Science, vol. 5(10), pages 1-10, October.
    9. Olivier François & Clément Gain, 2021. "A spectral theory for Wright’s inbreeding coefficients and related quantities," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-24, July.
    10. Barbara E Engelhardt & Matthew Stephens, 2010. "Analysis of Population Structure: A Unifying Framework and Novel Methods Based on Sparse Factor Analysis," PLOS Genetics, Public Library of Science, vol. 6(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Louis & Petra Korlević & Milaja Nykänen & Frederick Archer & Simon Berrow & Andrew Brownlow & Eline D. Lorenzen & Joanne O’Brien & Klaas Post & Fernando Racimo & Emer Rogan & Patricia E. Rosel &, 2023. "Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    3. Duforet-Frebourg, Nicolas & Slatkin, Montgomery, 2016. "Isolation-by-distance-and-time in a stepping-stone model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 24-35.
    4. Zheng, Xiuwen & Weir, Bruce S., 2016. "Eigenanalysis of SNP data with an identity by descent interpretation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 65-76.
    5. Douglas J. Kennett & Mark Lipson & Keith M. Prufer & David Mora-Marín & Richard J. George & Nadin Rohland & Mark Robinson & Willa R. Trask & Heather H. J. Edgar & Ethan C. Hill & Erin E. Ray & Paige L, 2022. "South-to-north migration preceded the advent of intensive farming in the Maya region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Peña-Malavera Andrea & Bruno Cecilia & Balzarini Monica & Fernandez Elmer, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 1-12, August.
    7. Chi-Chun Liu & David Witonsky & Anna Gosling & Ju Hyeon Lee & Harald Ringbauer & Richard Hagan & Nisha Patel & Raphaela Stahl & John Novembre & Mark Aldenderfer & Christina Warinner & Anna Di Rienzo &, 2022. "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Markus Neuditschko & Mehar S Khatkar & Herman W Raadsma, 2012. "NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    9. Priya Moorjani & Nick Patterson & Joel N Hirschhorn & Alon Keinan & Li Hao & Gil Atzmon & Edward Burns & Harry Ostrer & Alkes L Price & David Reich, 2011. "The History of African Gene Flow into Southern Europeans, Levantines, and Jews," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-13, April.
    10. Yedael Y Waldman & Arjun Biddanda & Natalie R Davidson & Paul Billing-Ross & Maya Dubrovsky & Christopher L Campbell & Carole Oddoux & Eitan Friedman & Gil Atzmon & Eran Halperin & Harry Ostrer & Alon, 2016. "The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    11. Wang Chaolong & Szpiech Zachary A & Degnan James H & Jakobsson Mattias & Pemberton Trevor J & Hardy John A & Singleton Andrew B & Rosenberg Noah A, 2010. "Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    12. Zhaoming Wang & Allan Hildesheim & Sophia S Wang & Rolando Herrero & Paula Gonzalez & Laurie Burdette & Amy Hutchinson & Gilles Thomas & Stephen J Chanock & Kai Yu, 2010. "Genetic Admixture and Population Substructure in Guanacaste Costa Rica," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    13. Maciej Chyleński & Przemysław Makarowicz & Anna Juras & Maja Krzewińska & Łukasz Pospieszny & Edvard Ehler & Agnieszka Breszka & Jacek Górski & Halina Taras & Anita Szczepanek & Marta Polańska & Piotr, 2023. "Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Sam Tallman & Maria das Dores Sungo & Sílvio Saranga & Sandra Beleza, 2023. "Whole genomes from Angola and Mozambique inform about the origins and dispersals of major African migrations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Pfaffelhuber, Peter & Rohde, Angelika, 2022. "A central limit theorem concerning uncertainty in estimates of individual admixture," Theoretical Population Biology, Elsevier, vol. 148(C), pages 28-39.
    16. Buschbom, Jutta, 2018. "Exploring and validating statistical reliability in forensic conservation genetics," Thünen Reports 63, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    17. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    18. Humberto García-Ortiz & Francisco Barajas-Olmos & Cecilia Contreras-Cubas & Miguel Ángel Cid-Soto & Emilio J. Córdova & Federico Centeno-Cruz & Elvia Mendoza-Caamal & Isabel Cicerón-Arellano & Marlen , 2021. "The genomic landscape of Mexican Indigenous populations brings insights into the peopling of the Americas," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Jason Sawler & Bruce Reisch & Mallikarjuna K Aradhya & Bernard Prins & Gan-Yuan Zhong & Heidi Schwaninger & Charles Simon & Edward Buckler & Sean Myles, 2013. "Genomics Assisted Ancestry Deconvolution in Grape," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    20. Kendra A. Sirak & Daniel M. Fernandes & Mark Lipson & Swapan Mallick & Matthew Mah & Iñigo Olalde & Harald Ringbauer & Nadin Rohland & Carla S. Hadden & Éadaoin Harney & Nicole Adamski & Rebecca Berna, 2021. "Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:148:y:2022:i:c:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.