IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i1p158-170.html
   My bibliography  Save this article

Gene surfing in expanding populations

Author

Listed:
  • Hallatschek, Oskar
  • Nelson, David R.

Abstract

Large scale genomic surveys are partly motivated by the idea that the neutral genetic variation of a population may be used to reconstruct its migration history. However, our ability to trace back the colonization pathways of a species from their genetic footprints is limited by our understanding of the genetic consequences of a range expansion. Here, we study, by means of simulations and analytical methods, the neutral dynamics of gene frequencies in an asexual population undergoing a continual range expansion in one dimension. During such a colonization period, lineages can fix at the wave front by means of a “surfing†mechanism [Edmonds, C.A., Lillie, A.S., Cavalli-Sforza, L.L., 2004. Mutations arising in the wave front of an expanding population. Proc. Natl. Acad. Sci. 101, 975–979]. We quantify this phenomenon in terms of (i) the spatial distribution of lineages that reach fixation and, closely related, (ii) the continual loss of genetic diversity (heterozygosity) at the wave front, characterizing the approach to fixation. Our stochastic simulations show that an effective population size can be assigned to the wave that controls the (observable) gradient in heterozygosity left behind the colonization process. This effective population size is markedly higher in the presence of cooperation between individuals (“pushed waves†) than when individuals proliferate independently (“pulled waves†), and increases only sub-linearly with deme size. To explain these and other findings, we develop a versatile analytical approach, based on the physics of reaction–diffusion systems, that yields simple predictions for any deterministic population dynamics. Our analytical theory compares well with the simulation results for pushed waves, but is less accurate in the case of pulled waves when stochastic fluctuations in the tip of the wave are important.

Suggested Citation

  • Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:158-170
    DOI: 10.1016/j.tpb.2007.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580907000937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2007.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Godfrey Hewitt, 2000. "The genetic legacy of the Quaternary ice ages," Nature, Nature, vol. 405(6789), pages 907-913, June.
    2. Benjamin L. Phillips & Gregory P. Brown & Jonathan K. Webb & Richard Shine, 2006. "Invasion and the evolution of speed in toads," Nature, Nature, vol. 439(7078), pages 803-803, February.
    3. Doering, Charles R. & Mueller, Carl & Smereka, Peter, 2003. "Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 243-259.
    4. Alan Templeton, 2002. "Out of Africa again and again," Nature, Nature, vol. 416(6876), pages 45-51, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri V. Tyutyunov, 2023. "Spatial Demo-Genetic Predator–Prey Model for Studying Natural Selection of Traits Enhancing Consumer Motility," Mathematics, MDPI, vol. 11(15), pages 1-18, August.
    2. Foutel-Rodier, Félix & Etheridge, Alison M., 2020. "The spatial Muller’s ratchet: Surfing of deleterious mutations during range expansion," Theoretical Population Biology, Elsevier, vol. 135(C), pages 19-31.
    3. Goodsman, Devin W. & Cooke, Barry & Coltman, David W. & Lewis, Mark A., 2014. "The genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing," Theoretical Population Biology, Elsevier, vol. 98(C), pages 1-10.
    4. Louvet, Apolline, 2022. "Extinction threshold and large population limit of a plant metapopulation model with recurrent extinction events and a seed bank component," Theoretical Population Biology, Elsevier, vol. 145(C), pages 22-37.
    5. Kajántó, Sándor & Néda, Zoltán, 2018. "Universality in the coarse-grained fluctuations for a class of linear dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 215-220.
    6. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    7. Wakano, Joe Y. & Kawasaki, Kohkichi & Shigesada, Nanako & Aoki, Kenichi, 2011. "Coexistence of individual and social learners during range expansion," Theoretical Population Biology, Elsevier, vol. 80(2), pages 132-140.
    8. Máté, Gabriell & Néda, Zoltán, 2016. "The advantage of inhomogeneity — Lessons from a noise driven linearized dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 310-317.
    9. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Genetic hitchhiking in spatially extended populations," Theoretical Population Biology, Elsevier, vol. 87(C), pages 75-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan T Weinstein & Maxim O Lavrentovich & Wolfram Möbius & Andrew W Murray & David R Nelson, 2017. "Genetic drift and selection in many-allele range expansions," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-31, December.
    2. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    3. Ilaria Bernabò & Viviana Cittadino & Sandro Tripepi & Vittoria Marchianò & Sandro Piazzini & Maurizio Biondi & Mattia Iannella, 2022. "Updating Distribution, Ecology, and Hotspots for Three Amphibian Species to Set Conservation Priorities in a European Glacial Refugium," Land, MDPI, vol. 11(8), pages 1-19, August.
    4. Silvia Marková & Hayley C. Lanier & Marco A. Escalante & Marcos O. R. Cruz & Michaela Horníková & Mateusz Konczal & Lawrence J. Weider & Jeremy B. Searle & Petr Kotlík, 2023. "Local adaptation and future climate vulnerability in a wild rodent," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Silu Wang & Madelyn J. Ore & Else K. Mikkelsen & Julie Lee-Yaw & David P. L. Toews & Sievert Rohwer & Darren Irwin, 2021. "Signatures of mitonuclear coevolution in a warbler species complex," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Boone, C.A.J.J. & van Witteloostuijn, A. & van Olffen, W. & de Brabander, B., 2003. "The Genesis of top management team diversity : selective turnover among top management teams in the Dutch newspaper publisher industry (1970-1994)," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Lavrentovich, Maxim O. & Nelson, David R., 2015. "Survival probabilities at spherical frontiers," Theoretical Population Biology, Elsevier, vol. 102(C), pages 26-39.
    8. Bryant, Adam S. & Lavrentovich, Maxim O., 2022. "Survival in branching cellular populations," Theoretical Population Biology, Elsevier, vol. 144(C), pages 13-23.
    9. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez & Eva Ramos-Ábalos, 2020. "Stochastic Square of the Brennan-Schwartz Diffusion Process: Statistical Computation and Application," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 455-476, June.
    10. Sandra Garcés-Pastor & Eric Coissac & Sébastien Lavergne & Christoph Schwörer & Jean-Paul Theurillat & Peter D. Heintzman & Owen S. Wangensteen & Willy Tinner & Fabian Rey & Martina Heer & Astrid Rutz, 2022. "High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Fahim Arshad & Muhammad Waheed & Kaneez Fatima & Nidaa Harun & Muhammad Iqbal & Kaniz Fatima & Shaheena Umbreen, 2022. "Predicting the Suitable Current and Future Potential Distribution of the Native Endangered Tree Tecomella undulata (Sm.) Seem. in Pakistan," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    12. Connor M. French & Laura D. Bertola & Ana C. Carnaval & Evan P. Economo & Jamie M. Kass & David J. Lohman & Katharine A. Marske & Rudolf Meier & Isaac Overcast & Andrew J. Rominger & Phillip P. A. Sta, 2023. "Global determinants of insect mitochondrial genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Kuparinen, Anna & Schurr, Frank M., 2007. "A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: Application to gene flow from transgenic forests," Ecological Modelling, Elsevier, vol. 202(3), pages 476-486.
    14. Cécile Berthouly-Salazar & Berndt J van Rensburg & Johannes J Le Roux & Bettine J van Vuuren & Cang Hui, 2012. "Spatial Sorting Drives Morphological Variation in the Invasive Bird, Acridotheris tristis," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    15. Amaël Borzée & Kevin R Messenger & Shinhyeok Chae & Desiree Andersen & Jordy Groffen & Ye Inn Kim & Junghwa An & Siti N Othman & Kyongsin Ri & Tu Yong Nam & Yoonhyuk Bae & Jin-Long Ren & Jia-Tang Li &, 2020. "Yellow sea mediated segregation between North East Asian Dryophytes species," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-34, June.
    16. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    17. Yogesh K. Gupta & Francismar C. Marcelino-Guimarães & Cécile Lorrain & Andrew Farmer & Sajeet Haridas & Everton Geraldo Capote Ferreira & Valéria S. Lopes-Caitar & Liliane Santana Oliveira & Emmanuell, 2023. "Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Boone, Christophe & Olffen, Woody,van & Witteloostuijn, Arjen,van, 2003. "The genesis of top management team diversity : selective Turnover among Top Management Teams in the Dutch Newspaper Publisher Industry (1970-1994)," Research Memorandum 036, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Gregory Thom & Marcelo Gehara & Brian Tilston Smith & Cristina Y. Miyaki & Fábio Raposo Amaral, 2021. "Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:158-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.