IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v292y2017icp320-335.html
   My bibliography  Save this article

The dynamics of an impulsive predator–prey model with communicable disease in the prey species only

Author

Listed:
  • Xie, Youxiang
  • Wang, Linjun
  • Deng, Qicheng
  • Wu, Zhengjia

Abstract

In this paper, we propose an impulsive predator–prey model with communicable disease in the prey species only and investigate its interesting biological dynamics. By the Floquet theory of impulsive differential equation and small amplitude perturbation skills, we have deduced the sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the proposed model. We also give the existences of the “infection-free” periodic solution and the “predator-free” solution. Finally, numerical results validate the effectiveness of theoretical analysis for the proposed model in this paper.

Suggested Citation

  • Xie, Youxiang & Wang, Linjun & Deng, Qicheng & Wu, Zhengjia, 2017. "The dynamics of an impulsive predator–prey model with communicable disease in the prey species only," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 320-335.
  • Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:320-335
    DOI: 10.1016/j.amc.2016.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316304805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Limin & Liu, Zhijun & Jinghui, & Chen, Lansun, 2007. "Impulsive diffusion in single species model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1213-1219.
    2. Jiao, Jianjun & Yang, Xiaosong & Chen, Lansun & Cai, Shaohong, 2009. "Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2280-2287.
    3. Xia, Cheng-yi & Wang, Zhen & Sanz, Joaquin & Meloni, Sandro & Moreno, Yamir, 2013. "Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1577-1585.
    4. Benjamin L. Phillips & Gregory P. Brown & Jonathan K. Webb & Richard Shine, 2006. "Invasion and the evolution of speed in toads," Nature, Nature, vol. 439(7078), pages 803-803, February.
    5. Liu, Zhijun & Chen, Lansun, 2007. "Periodic solution of a two-species competitive system with toxicant and birth pulse," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1703-1712.
    6. Lin Wang & Xiang Li & Yi-Qing Zhang & Yan Zhang & Kan Zhang, 2011. "Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    7. Hui, Jing & Chen, Lansun, 2006. "Dynamic complexities in a periodically pulsed ratio-dependent predator–prey ecosystem modeled on a chemostat," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 407-416.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hong-Li & Zhang, Long & Teng, Zhidong & Jiang, Yao-Lin & Muhammadhaji, Ahmadjan, 2018. "Global stability of an SI epidemic model with feedback controls in a patchy environment," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 372-384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
    2. Xiang, Zhongyi & Tang, Sanyi & Xiang, Changcheng & Wu, Jianhong, 2015. "On impulsive pest control using integrated intervention strategies," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 930-946.
    3. Zhang, Gui-Qing & Hu, Tao-Ping & Yu, Zi, 2016. "An improved fitness evaluation mechanism with noise in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 31-36.
    4. Yi-Ling, Wang & Gui-Qing, Zhang, 2013. "Optimal convergence in fame game with familiarity," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 222-226.
    5. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    6. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    8. Xiangjun Dai & Hui Jiao & Jianjun Jiao & Qi Quan, 2023. "Survival Analysis of a Predator–Prey Model with Seasonal Migration of Prey Populations between Breeding and Non-Breeding Regions," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    9. Zhu, Linhe & Huang, Xiaoyuan, 2021. "Modeling the dynamics of multi-cluster information propagation in presence of time delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    11. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    12. Bryan T Weinstein & Maxim O Lavrentovich & Wolfram Möbius & Andrew W Murray & David R Nelson, 2017. "Genetic drift and selection in many-allele range expansions," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-31, December.
    13. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    14. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez & Eva Ramos-Ábalos, 2020. "Stochastic Square of the Brennan-Schwartz Diffusion Process: Statistical Computation and Application," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 455-476, June.
    15. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Chen, Xianhuan & Xia, Chengyi & Wang, Jin, 2018. "A novel trust-based community detection algorithm used in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 57-65.
    17. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    18. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    19. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
    20. Tongqian Zhang & Wanbiao Ma & Xinzhu Meng, 2017. "Impulsive control of a continuous-culture and flocculation harvest chemostat model," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(16), pages 3459-3469, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:320-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.