IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004978.html
   My bibliography  Save this article

Computationally Efficient Implementation of a Novel Algorithm for the General Unified Threshold Model of Survival (GUTS)

Author

Listed:
  • Carlo Albert
  • Sören Vogel
  • Roman Ashauer

Abstract

The General Unified Threshold model of Survival (GUTS) provides a consistent mathematical framework for survival analysis. However, the calibration of GUTS models is computationally challenging. We present a novel algorithm and its fast implementation in our R package, GUTS, that help to overcome these challenges. We show a step-by-step application example consisting of model calibration and uncertainty estimation as well as making probabilistic predictions and validating the model with new data. Using self-defined wrapper functions, we show how to produce informative text printouts and plots without effort, for the inexperienced as well as the advanced user. The complete ready-to-run script is available as supplemental material. We expect that our software facilitates novel re-analysis of existing survival data as well as asking new research questions in a wide range of sciences. In particular the ability to quickly quantify stressor thresholds in conjunction with dynamic compensating processes, and their uncertainty, is an improvement that complements current survival analysis methods.

Suggested Citation

  • Carlo Albert & Sören Vogel & Roman Ashauer, 2016. "Computationally Efficient Implementation of a Novel Algorithm for the General Unified Threshold Model of Survival (GUTS)," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-19, June.
  • Handle: RePEc:plo:pcbi00:1004978
    DOI: 10.1371/journal.pcbi.1004978
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004978
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004978&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pollesch, N.L. & Flynn, K.M. & Kadlec, S.M. & Swintek, J.A. & Raimondo, S. & Etterson, M.A., 2022. "Developing integral projection models for ecotoxicology," Ecological Modelling, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández de Marcos Giménez de los Galanes, Alberto & García Portugués, Eduardo, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    3. Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    4. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    5. Bill Venables, 2017. "JOHN M. CHAMBERS . Extending R . Boca Raton : CRC Press," Biometrics, The International Biometric Society, vol. 73(2), pages 709-710, June.
    6. Roberto Mari & Zsuzsa Bakk & Jennifer Oser & Jouni Kuha, 2023. "A two-step estimator for multilevel latent class analysis with covariates," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1144-1170, December.
    7. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    8. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    9. Adrien Ickowicz & Jessica Ford & Keith Hayes, 2019. "A Mixture Model Approach for Compositional Data: Inferring Land-Use Influence on Point-Referenced Water Quality Measurements," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 719-739, December.
    10. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    11. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    12. Martina Sundqvist & Julien Chiquet & Guillem Rigaill, 2023. "Adjusting the adjusted Rand Index," Computational Statistics, Springer, vol. 38(1), pages 327-347, March.
    13. Rathelot, Roland, 2014. "Ethnic differentials on the labor market in the presence of asymmetric spatial sorting: Set identification and estimation," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 154-167.
    14. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    15. Mirshani, Ardalan & Reimherr, Matthew, 2021. "Adaptive function-on-scalar regression with a smoothing elastic net," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    16. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    17. Fernández-de-Marcos, Alberto & García-Portugués, Eduardo, 2023. "Data-driven stabilizations of goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Julien Boelaert, 2013. "A Neural Network Demand System," Documents de travail du Centre d'Economie de la Sorbonne 13081, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
    20. Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.