IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v204y2025ics0167947324001798.html
   My bibliography  Save this article

Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation

Author

Listed:
  • Samson, Adeline
  • Tamborrino, Massimiliano
  • Tubikanec, Irene

Abstract

The stochastic FitzHugh-Nagumo (FHN) model is a two-dimensional nonlinear stochastic differential equation with additive degenerate noise, whose first component, the only one observed, describes the membrane voltage evolution of a single neuron. Due to its low-dimensionality, its analytical and numerical tractability and its neuronal interpretation, it has been used as a case study to test the performance of different statistical methods in estimating the underlying model parameters. Existing methods, however, often require complete observations, non-degeneracy of the noise or a complex architecture (e.g., to estimate the transition density of the process, ‘‘recovering’’ the unobserved second component) and they may not (satisfactorily) estimate all model parameters simultaneously. Moreover, these studies lack real data applications for the stochastic FHN model. The proposed method tackles all challenges (non-globally Lipschitz drift, non-explicit solution, lack of available transition density, degeneracy of the noise and partial observations). It is an intuitive and easy-to-implement sequential Monte Carlo approximate Bayesian computation algorithm, which relies on a recent computationally efficient and structure-preserving numerical splitting scheme for synthetic data generation and on summary statistics exploiting the structural properties of the process. All model parameters are successfully estimated from simulated data and, more remarkably, real action potential data of rats. The presented novel real-data fit may broaden the scope and credibility of this classic and widely used neuronal model.

Suggested Citation

  • Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001798
    DOI: 10.1016/j.csda.2024.108095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001798
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    2. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.
    3. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    4. Libo Sun & Chihoon Lee & Jennifer A. Hoeting, 2015. "Parameter inference and model selection in deterministic and stochastic dynamical models via approximate Bayesian computation: modeling a wildlife epidemic," Environmetrics, John Wiley & Sons, Ltd., vol. 26(7), pages 451-462, November.
    5. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
    6. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    7. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    8. repec:dau:papers:123456789/5724 is not listed on IDEAS
    9. Andrea Tancredi, 2019. "Approximate Bayesian inference for discretely observed continuous‐time multi‐state models," Biometrics, The International Biometric Society, vol. 75(3), pages 966-977, September.
    10. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    11. repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
    12. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    13. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.
    14. Umberto Picchini & Adeline Samson, 2018. "Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models," Computational Statistics, Springer, vol. 33(1), pages 179-212, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    2. Iguchi, Yuga & Beskos, Alexandros & Graham, Matthew M., 2024. "Parameter inference for degenerate diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    3. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    4. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    5. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    6. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    7. Nilton O. B. Ávido & Paula Milheiro-Oliveira, 2025. "Parameter Estimation of a Partially Observed Hypoelliptic Stochastic Linear System," Mathematics, MDPI, vol. 13(3), pages 1-17, February.
    8. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    9. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.
    10. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    11. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    12. repec:osf:osfxxx:enzgs_v1 is not listed on IDEAS
    13. Fernández de Marcos Giménez de los Galanes, Alberto & García Portugués, Eduardo, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    15. Sloot Henrik, 2022. "Implementing Markovian models for extendible Marshall–Olkin distributions," Dependence Modeling, De Gruyter, vol. 10(1), pages 308-343, January.
    16. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    17. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    18. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    19. Bill Venables, 2017. "JOHN M. CHAMBERS . Extending R . Boca Raton : CRC Press," Biometrics, The International Biometric Society, vol. 73(2), pages 709-710, June.
    20. Roberto Mari & Zsuzsa Bakk & Jennifer Oser & Jouni Kuha, 2023. "A two-step estimator for multilevel latent class analysis with covariates," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1144-1170, December.
    21. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.