IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002660.html
   My bibliography  Save this article

Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles

Author

Listed:
  • Gergely Boza
  • Ádám Kun
  • István Scheuring
  • Ulf Dieckmann

Abstract

There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions. Author Summary: Mutualistic interactions between species are often best understood as gradually adjustable reciprocal investments made continuously or iteratively between participants. Prime examples are the mycorrhizal and rhizobial mutualisms so strongly affecting the productivity of plants. When such interactions are described by continuous reciprocal investment games, participants adjust their investments plastically in response to their mutualistic partner's most recent investment. Although common sense suggests that such conditional or reactive behavior provides a potent defense against exploitation, our comprehensive model analysis reveals that the coevolution of investment strategies will often instead induce instability and decay of mutualistic interactions. We also identify several factors that can prevent this decay. First, mutualisms can be stably maintained if the investment strategies of participants are sufficiently diverse. Second, if participants are limited in their movements, the formation of dynamic spatial mosaic structures promotes strategy diversity and thereby facilitates the maintenance of mutualism. These ecological and evolutionary dynamics result in communities with a diversity of interaction types, ranging from mutually beneficial to exploitative, and varying both in space and in time.

Suggested Citation

  • Gergely Boza & Ádám Kun & István Scheuring & Ulf Dieckmann, 2012. "Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
  • Handle: RePEc:plo:pcbi00:1002660
    DOI: 10.1371/journal.pcbi.1002660
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002660
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002660&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bendor, Jonathan & Swistak, Piotr, 1997. "The Evolutionary Stability of Cooperation," American Political Science Review, Cambridge University Press, vol. 91(2), pages 290-307, June.
    2. David S. Hibbett & Luz-Beatriz Gilbert & Michael J. Donoghue, 2000. "Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes," Nature, Nature, vol. 407(6803), pages 506-508, September.
    3. U. Dieckmann & R. Law, 1996. "The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes," Working Papers wp96001, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Streich & Jack S. Levy, 2007. "Time Horizons, Discounting, and Intertemporal Choice," Journal of Conflict Resolution, Peace Science Society (International), vol. 51(2), pages 199-226, April.
    2. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    3. Alexander Field, 2008. "Why multilevel selection matters," Journal of Bioeconomics, Springer, vol. 10(3), pages 203-238, December.
    4. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    5. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    6. Cressman, Ross & Hofbauer, Josef & Riedel, Frank, 2005. "Stability of the Replicator Equation for a Single-Species with a Multi-Dimensional Continuous Trait Space," Bonn Econ Discussion Papers 12/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    7. Peña, Jorge & González-Forero, Mauricio, 2020. "Eusociality through conflict dissolution via maternal reproductive specialization," IAST Working Papers 20-110, Institute for Advanced Study in Toulouse (IAST).
    8. García, Julián & van Veelen, Matthijs, 2016. "In and out of equilibrium I: Evolution of strategies in repeated games with discounting," Journal of Economic Theory, Elsevier, vol. 161(C), pages 161-189.
    9. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    10. Hammerstein, Peter & Leimar, Olof, 2015. "Evolutionary Game Theory in Biology," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Hernán Darío Toro-Zapata & Gerard Olivar-Tost, 2018. "Mathematical Model For The Evolutionary Dynamic Of Innovation In City Public Transport Systems," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 77-98.
    12. Pedro Dal Bo & Guillaume R. Frochette, 2011. "The Evolution of Cooperation in Infinitely Repeated Games: Experimental Evidence," American Economic Review, American Economic Association, vol. 101(1), pages 411-429, February.
    13. Amit Vutha & Martin Golubitsky, 2015. "Normal Forms and Unfoldings of Singular Strategy Functions," Dynamic Games and Applications, Springer, vol. 5(2), pages 180-213, June.
    14. J. P. Bayer & V. A. Vasilyeva & I. A. Vetrenko, 2021. "Game Modeling of the Political Space: Analysis of Foreign Literature," Administrative Consulting, Russian Presidential Academy of National Economy and Public Administration. North-West Institute of Management., issue 9.
    15. Meng, Xin-zhu & Zhao, Sheng-nan & Zhang, Wen-yan, 2015. "Adaptive dynamics analysis of a predator–prey model with selective disturbance," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 946-958.
    16. Dercole, Fabio & Della Rossa, Fabio, 2017. "A deterministic eco-genetic model for the short-term evolution of exploited fish stocks," Ecological Modelling, Elsevier, vol. 343(C), pages 80-100.
    17. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    18. Horan, Richard D. & Shogren, Jason F. & Bulte, Erwin H., 2011. "Joint determination of biological encephalization, economic specialization," Resource and Energy Economics, Elsevier, vol. 33(2), pages 426-439, May.
    19. Kalle Pajunen, 2006. "Living in Agreement with a Contract: The Management of Moral and Viable Firm–Stakeholder Relationships," Journal of Business Ethics, Springer, vol. 68(3), pages 243-258, October.
    20. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.