IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030015.html
   My bibliography  Save this article

Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology

Author

Listed:
  • Stefano Ciliberti
  • Olivier C Martin
  • Andreas Wagner

Abstract

The topology of cellular circuits (the who-interacts-with-whom) is key to understand their robustness to both mutations and noise. The reason is that many biochemical parameters driving circuit behavior vary extensively and are thus not fine-tuned. Existing work in this area asks to what extent the function of any one given circuit is robust. But is high robustness truly remarkable, or would it be expected for many circuits of similar topology? And how can high robustness come about through gradual Darwinian evolution that changes circuit topology gradually, one interaction at a time? We here ask these questions for a model of transcriptional regulation networks, in which we explore millions of different network topologies. Robustness to mutations and noise are correlated in these networks. They show a skewed distribution, with a very small number of networks being vastly more robust than the rest. All networks that attain a given gene expression state can be organized into a graph whose nodes are networks that differ in their topology. Remarkably, this graph is connected and can be easily traversed by gradual changes of network topologies. Thus, robustness is an evolvable property. This connectedness and evolvability of robust networks may be a general organizational principle of biological networks. In addition, it exists also for RNA and protein structures, and may thus be a general organizational principle of all biological systems.Author Summary: Living things are astonishingly complex, yet unlike houses of cards they are also highly robust. That is, they have persisted for billions of years, despite being exposed to an endless stream of environmental stressors and random mutations. Is this robustness an evolvable property? Do different biological systems vary in their robustness? Has natural selection shaped this robustness? These questions are very difficult to answer experimentally for most systems, be they proteins or large gene networks. Here we address these questions with a model of the transcription regulation networks that regulate both cellular functions and embryonic development in many organisms. We examine millions of such networks that differ in the topology or architecture of their regulatory interactions, that is, in the “who interacts with whom” of a network. We find that radically different network architectures can show the same gene expression pattern. The networks' robustness to both mutations and gene expression noise shows a broad distribution: some network architectures are highly robust, whereas others are quite fragile. Importantly, the entire space of network architectures can be traversed through small changes of individual regulatory interactions, without changing a network's gene expression pattern. This means that high robustness in gene expression can evolve through gradual and neutral evolution in the space of network architectures. Our results show that the robustness of transcriptional regulation networks is an evolvable trait that natural selection can change like any other trait.

Suggested Citation

  • Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
  • Handle: RePEc:plo:pcbi00:0030015
    DOI: 10.1371/journal.pcbi.0030015
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030015
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030015&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William J. Blake & Mads KÆrn & Charles R. Cantor & J. J. Collins, 2003. "Noise in eukaryotic gene expression," Nature, Nature, vol. 422(6932), pages 633-637, April.
    2. Ángel Raya & Yasuhiko Kawakami & Concepción Rodríguez-Esteban & Marta Ibañes & Diego Rasskin-Gutman & Joaquín Rodríguez-León & Dirk Büscher & José A. Feijó & Juan Carlos Izpisúa Belmonte, 2004. "Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination," Nature, Nature, vol. 427(6970), pages 121-128, January.
    3. U. Alon & M. G. Surette & N. Barkai & S. Leibler, 1999. "Robustness in bacterial chemotaxis," Nature, Nature, vol. 397(6715), pages 168-171, January.
    4. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    5. Ricardo B. R. Azevedo & Rolf Lohaus & Suraj Srinivasan & Kristen K. Dang & Christina L. Burch, 2006. "Sexual reproduction selects for robustness and negative epistasis in artificial gene networks," Nature, Nature, vol. 440(7080), pages 87-90, March.
    6. Naama Barkai & Stanislas Leibler, 2000. "Circadian clocks limited by noise," Nature, Nature, vol. 403(6767), pages 267-268, January.
    7. George von Dassow & Eli Meir & Edwin M. Munro & Garrett M. Odell, 2000. "The segment polarity network is a robust developmental module," Nature, Nature, vol. 406(6792), pages 188-192, July.
    8. Johannes Jaeger & Svetlana Surkova & Maxim Blagov & Hilde Janssens & David Kosman & Konstantin N. Kozlov & Manu & Ekaterina Myasnikova & Carlos E. Vanario-Alonso & Maria Samsonova & David H. Sharp & J, 2004. "Dynamic control of positional information in the early Drosophila embryo," Nature, Nature, vol. 430(6997), pages 368-371, July.
    9. Matthew Freeman, 2000. "Feedback control of intercellular signalling in development," Nature, Nature, vol. 408(6810), pages 313-319, November.
    10. Eric van Nimwegen & James P. Crutchfield & Martijn Huynen, 1999. "Neutral Evolution of Mutational Robustness," Working Papers 99-03-021, Santa Fe Institute.
    11. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    12. Timothy S. Gardner & Charles R. Cantor & James J. Collins, 2000. "Construction of a genetic toggle switch in Escherichia coli," Nature, Nature, vol. 403(6767), pages 339-342, January.
    13. Aviv Bergman & Mark L. Siegal, 2003. "Evolutionary capacitance as a general feature of complex gene networks," Nature, Nature, vol. 424(6948), pages 549-552, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadamune Kaneko & Macoto Kikuchi, 2022. "Evolution enhances mutational robustness and suppresses the emergence of a new phenotype: A new computational approach for studying evolution," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-20, January.
    2. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Emmert-Streib, Frank & Dehmer, Matthias, 2009. "Fault tolerance of information processing in gene networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 541-548.
    4. Sam F Greenbury & Steffen Schaper & Sebastian E Ahnert & Ard A Louis, 2016. "Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-27, March.
    5. Payne, Joshua L., 2016. "No tradeoff between versatility and robustness in gene circuit motifs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 192-199.
    6. Zang, Hong & Zhang, Tonghua & Zhang, Yanduo, 2015. "Bifurcation analysis of a mathematical model for genetic regulatory network with time delays," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 204-226.
    7. Nasimul Noman & Taku Monjo & Pablo Moscato & Hitoshi Iba, 2015. "Evolving Robust Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-21, January.
    8. Krishnan, Arun & Tomita, Masaru & Giuliani, Alessandro, 2008. "Evolution of gene regulatory networks: Robustness as an emergent property of evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2170-2186.
    9. Shintaro Nagata & Macoto Kikuchi, 2020. "Emergence of cooperative bistability and robustness of gene regulatory networks," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    2. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    3. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    4. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    5. Miles Miller & Marc Hafner & Eduardo Sontag & Noah Davidsohn & Sairam Subramanian & Priscilla E M Purnick & Douglas Lauffenburger & Ron Weiss, 2012. "Modular Design of Artificial Tissue Homeostasis: Robust Control through Synthetic Cellular Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-18, July.
    6. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    7. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    8. Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    9. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    10. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    11. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    13. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    14. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.
    15. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    16. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Global synchronization for a class of dynamical complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 543-556.
    17. Evgeni V Nikolaev & Eduardo D Sontag, 2016. "Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-33, April.
    18. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    19. Keun-Young Kim & Jin Wang, 2007. "Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-13, March.
    20. Liu, Xian & Wang, Jinzhi & Huang, Lin, 2007. "Stabilization of a class of dynamical complex networks based on decentralized control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 733-744.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.