IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0051840.html
   My bibliography  Save this article

Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops

Author

Listed:
  • Hui Zhang
  • Yueling Chen
  • Yong Chen

Abstract

It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.

Suggested Citation

  • Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0051840
    DOI: 10.1371/journal.pone.0051840
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051840
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051840&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0051840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    2. William J. Blake & Mads KÆrn & Charles R. Cantor & J. J. Collins, 2003. "Noise in eukaryotic gene expression," Nature, Nature, vol. 422(6932), pages 633-637, April.
    3. Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
    4. Alex Sigal & Ron Milo & Ariel Cohen & Naama Geva-Zatorsky & Yael Klein & Yuvalal Liron & Nitzan Rosenfeld & Tamar Danon & Natalie Perzov & Uri Alon, 2006. "Variability and memory of protein levels in human cells," Nature, Nature, vol. 444(7119), pages 643-646, November.
    5. Matthew Freeman, 2000. "Feedback control of intercellular signalling in development," Nature, Nature, vol. 408(6810), pages 313-319, November.
    6. Johan Paulsson, 2004. "Summing up the noise in gene networks," Nature, Nature, vol. 427(6973), pages 415-418, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Yuan Hsu & Bor-Sen Chen, 2016. "Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    2. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    2. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    3. Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
    4. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    5. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    6. Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    7. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    9. Karl P. Gerhardt & Satyajit D. Rao & Evan J. Olson & Oleg A. Igoshin & Jeffrey J. Tabor, 2021. "Independent control of mean and noise by convolution of gene expression distributions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Tina Toni & Bruce Tidor, 2013. "Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-17, March.
    11. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    12. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    13. Namiko Mitarai & Ian B Dodd & Michael T Crooks & Kim Sneppen, 2008. "The Generation of Promoter-Mediated Transcriptional Noise in Bacteria," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    14. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    15. Li, Hongying & Yao, Chengli, 2017. "The influence of internal noise on the detection of hormonal signal with the existence of external noise in a cell system," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 1-6.
    16. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    17. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    18. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    19. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    20. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0051840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.