IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2005130.html
   My bibliography  Save this article

High-dimensional single-cell phenotyping reveals extensive haploinsufficiency

Author

Listed:
  • Shinsuke Ohnuki
  • Yoshikazu Ohya

Abstract

Haploinsufficiency, a dominant phenotype caused by a heterozygous loss-of-function mutation, has been rarely observed. However, high-dimensional single-cell phenotyping of yeast morphological characteristics revealed haploinsufficiency phenotypes for more than half of 1,112 essential genes under optimal growth conditions. Additionally, 40% of the essential genes with no obvious phenotype under optimal growth conditions displayed haploinsufficiency under severe growth conditions. Haploinsufficiency was detected more frequently in essential genes than in nonessential genes. Similar haploinsufficiency phenotypes were observed mostly in mutants with heterozygous deletion of functionally related genes, suggesting that haploinsufficiency phenotypes were caused by functional defects of the genes. A global view of the gene network was presented based on the similarities of the haploinsufficiency phenotypes. Our dataset contains rich information regarding essential gene functions, providing evidence that single-cell phenotyping is a powerful approach, even in the heterozygous condition, for analyzing complex biological systems.Author summary: Diploid organisms harboring a wild-type gene and a loss-of-function mutation are called heterozygotes. They are expected to have weak or no individual phenotypes because the mutation is compensated for by the intact allele. The dominant inheritance of phenotypes in heterozygotes is an exceptional phenomenon called haploinsufficiency. Haploinsufficiency was thought to be a rare occurrence; however, a sensitive technique called high-dimensional single-cell phenotyping challenges this perspective. Investigations of single-cell phenotypes revealed that a large extent of the essential genes in yeast exhibit haploinsufficiency. Our analyses also provided crucial information on gene functional networks based on haploinsufficiency phenotypes. This work shows that high-dimensional single-cell phenotyping is a useful tool that can be used to better understand complex biological systems.

Suggested Citation

  • Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
  • Handle: RePEc:plo:pbio00:2005130
    DOI: 10.1371/journal.pbio.2005130
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005130
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2005130&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2005130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Balázs Papp & Csaba Pál & Laurence D. Hurst, 2003. "Dosage sensitivity and the evolution of gene families in yeast," Nature, Nature, vol. 424(6945), pages 194-197, July.
    3. Jason Ptacek & Geeta Devgan & Gregory Michaud & Heng Zhu & Xiaowei Zhu & Joseph Fasolo & Hong Guo & Ghil Jona & Ashton Breitkreutz & Richelle Sopko & Rhonda R. McCartney & Martin C. Schmidt & Najma Ra, 2005. "Global analysis of protein phosphorylation in yeast," Nature, Nature, vol. 438(7068), pages 679-684, December.
    4. Aya Iwaki & Shinsuke Ohnuki & Yohei Suga & Shingo Izawa & Yoshikazu Ohya, 2013. "Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    5. Ni Huang & Insuk Lee & Edward M Marcotte & Matthew E Hurles, 2010. "Characterising and Predicting Haploinsufficiency in the Human Genome," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
    6. Sina Ghaemmaghami & Won-Ki Huh & Kiowa Bower & Russell W. Howson & Archana Belle & Noah Dephoure & Erin K. O'Shea & Jonathan S. Weissman, 2003. "Global analysis of protein expression in yeast," Nature, Nature, vol. 425(6959), pages 737-741, October.
    7. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    8. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Fabrizio & Shawn Hoon & Mehrnaz Shamalnasab & Abdulaye Galbani & Min Wei & Guri Giaever & Corey Nislow & Valter D Longo, 2010. "Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation," PLOS Genetics, Public Library of Science, vol. 6(7), pages 1-14, July.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    3. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    4. Georgia Mangion & Melanie Simmonds-Buckley & Stephen Kellett & Peter Taylor & Amy Degnan & Charlotte Humphrey & Kate Freshwater & Marisa Poggioli & Cristina Fiorani, 2022. "Modelling Identity Disturbance: A Network Analysis of the Personality Structure Questionnaire (PSQ)," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    5. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    6. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    7. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    8. Xiao Yang & Nilam Ram & Scott D. Gest & David M. Lydon-Staley & David E. Conroy & Aaron L. Pincus & Peter C. M. Molenaar, 2018. "Socioemotional Dynamics of Emotion Regulation and Depressive Symptoms: A Person-Specific Network Approach," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    9. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    10. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    11. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    12. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    13. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    14. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    15. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    16. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    17. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    18. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    19. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    20. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2005130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.