IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1002386.html
   My bibliography  Save this article

Social Evolution Selects for Redundancy in Bacterial Quorum Sensing

Author

Listed:
  • Eran Even-Tov
  • Shira Omer Bendori
  • Julie Valastyan
  • Xiaobo Ke
  • Shaul Pollak
  • Tasneem Bareia
  • Ishay Ben-Zion
  • Bonnie L Bassler
  • Avigdor Eldar

Abstract

Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.The accumulation of multiple, seemingly redundant, bacterial quorum-sensing systems is promoted by facultative cheating behavior; the strain with multiple systems cheats its single quorum-sensing system ancestor as a minority but returns to cooperation when in the majority.Author Summary: Quorum sensing is a mechanism through which bacteria communicate by producing, releasing, and detecting signal molecules encoding information about cell population density. Quorum sensing allows bacteria to synchronize their behaviors and act as collectives. Often, quorum sensing controls cooperative behaviors that benefit the entire community, such as the production and secretion of costly metabolites. Some bacteria release multiple signal molecules which, once detected, funnel information into the same cellular response. Thus, the benefit of using multiple rather than a single signal is mysterious since the signals seem redundant. Here, we combine modeling and experiments to show that the evolutionary accumulation of multiple quorum-sensing systems can be attributed to social exploitation and kin recognition. When in low abundance, a strain that has acquired an additional quorum-sensing system can avoid cooperating and can exploit its ancestor strain, which contains one less quorum-sensing system. The cheater containing the additional system returns to a cooperative behavior when it is abundant. We also identify the molecular mechanisms necessary for the acquisition of an additional signaling system. Our work demonstrates that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

Suggested Citation

  • Eran Even-Tov & Shira Omer Bendori & Julie Valastyan & Xiaobo Ke & Shaul Pollak & Tasneem Bareia & Ishay Ben-Zion & Bonnie L Bassler & Avigdor Eldar, 2016. "Social Evolution Selects for Redundancy in Bacterial Quorum Sensing," PLOS Biology, Public Library of Science, vol. 14(2), pages 1-18, February.
  • Handle: RePEc:plo:pbio00:1002386
    DOI: 10.1371/journal.pbio.1002386
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002386
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002386&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1002386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric D. Kelsic & Jeffrey Zhao & Kalin Vetsigian & Roy Kishony, 2015. "Counteraction of antibiotic production and degradation stabilizes microbial communities," Nature, Nature, vol. 521(7553), pages 516-519, May.
    2. Stephen P. Diggle & Ashleigh S. Griffin & Genevieve S. Campbell & Stuart A. West, 2007. "Cooperation and conflict in quorum-sensing bacterial populations," Nature, Nature, vol. 450(7168), pages 411-414, November.
    3. Médéric Diard & Victor Garcia & Lisa Maier & Mitja N. P. Remus-Emsermann & Roland R. Regoes & Martin Ackermann & Wolf-Dietrich Hardt, 2013. "Stabilization of cooperative virulence by the expression of an avirulent phenotype," Nature, Nature, vol. 494(7437), pages 353-356, February.
    4. Lorenzo A. Santorelli & Christopher R. L. Thompson & Elizabeth Villegas & Jessica Svetz & Christopher Dinh & Anup Parikh & Richard Sucgang & Adam Kuspa & Joan E. Strassmann & David C. Queller & Gad Sh, 2008. "Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae," Nature, Nature, vol. 451(7182), pages 1107-1110, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Christensen & Wilhelmina H. Gera Hol & Viola Kurm & Mette Vestergård, 2021. "Increased Likelihood of High Nitrous Oxide (N 2 O) Exchange in Soils at Reduced Microbial Diversity," Sustainability, MDPI, vol. 13(4), pages 1-8, February.
    2. Felix J H Hol & Peter Galajda & Krisztina Nagy & Rutger G Woolthuis & Cees Dekker & Juan E Keymer, 2013. "Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    3. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    4. Kerry E Boyle & Hilary Monaco & Dave van Ditmarsch & Maxime Deforet & Joao B Xavier, 2015. "Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-26, June.
    5. Anne Mund & Christina Kuttler & Judith Pérez-Velázquez, 2019. "Using G -Functions to Investigate the Evolutionary Stability of Bacterial Quorum Sensing," Mathematics, MDPI, vol. 7(11), pages 1-17, November.
    6. Li Xie & Wenying Shou, 2021. "Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Yang, Xinbin & Xu, Xinming & Hu, Dawei, 2020. "Succession mechanism of microbial community with high species diversity in nutrient-deficient environments with low-dose ionizing radiation," Ecological Modelling, Elsevier, vol. 435(C).
    8. Anne-Stéphanie Rueff & Renske Raaphorst & Surya D. Aggarwal & Javier Santos-Moreno & Géraldine Laloux & Yolanda Schaerli & Jeffrey N. Weiser & Jan-Willem Veening, 2023. "Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jorge M Pacheco & Vítor V Vasconcelos & Francisco C Santos & Brian Skyrms, 2015. "Co-evolutionary Dynamics of Collective Action with Signaling for a Quorum," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-12, February.
    10. Peña, Jorge & Cooper, Guy Alexander & Liu, Ming & West, Stuart Andrew, 2020. "Dividing labour in social microorganisms: coordinated or random specialisation?," IAST Working Papers 20-104, Institute for Advanced Study in Toulouse (IAST).
    11. Li, Yixiao & Shen, Bin, 2013. "The coevolution of partner switching and strategy updating in non-excludable public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4956-4965.
    12. Elhanati, Yuval & Schuster, Stefan & Brenner, Naama, 2011. "Dynamic modeling of cooperative protein secretion in microorganism populations," Theoretical Population Biology, Elsevier, vol. 80(1), pages 49-63.
    13. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Te Wu & Long Wang & Feng Fu, 2017. "Coevolutionary dynamics of phenotypic diversity and contingent cooperation," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    15. Martin Schuster & Eric Foxall & David Finch & Hal Smith & Patrick De Leenheer, 2017. "Tragedy of the commons in the chemostat," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1002386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.