IDEAS home Printed from https://ideas.repec.org/a/phs/prejrn/v62y2025i1p27-55.html
   My bibliography  Save this article

Forecasting currency in circulation with the central bank balance sheet

Author

Listed:
  • Adrian Matthew Glova

    (University of the Philippines)

  • Roy Hernandez

    (Bangko Sentral ng Pilipinas)

Abstract

Currency in circulation (CIC) is an important variable in monetary policy as it affects liquidity and guides the currency issuance operations of central banks. This paper proposes a novel approach to forecast CIC using central bank balance sheet variables, namely assets and liabilities other than currency issued. The balance sheet approach is able to generate monthly CIC forecasts as opposed to demand-for-currency models anchored on quarterly Gross Domestic Product (GDP). This allows for more responsive currency policy, particularly during crisis periods when precautionary motives intensify—reflected in a decoupling of GDP and CIC—or when spikes in currency demand arise due to heightened transaction motives. Dynamic time series regression models are estimated to operationalize the balance sheet approach and are compared to baseline predictive methods such as Error-Trend-Seasonality (ETS) models, Autoregressive Integrated Moving Average (ARIMA), and seasonal naïve methods. Results show that including balance sheet variables significantly improves the predictive ability of CIC models in terms of mean absolute percentage error (MAPE) and root mean squared scaled error (RMSSE). These findings hold across multiple training and test sets through time series cross-validation, suggesting stability of forecast accuracy results.

Suggested Citation

  • Adrian Matthew Glova & Roy Hernandez, 2025. "Forecasting currency in circulation with the central bank balance sheet," Philippine Review of Economics, University of the Philippines School of Economics and Philippine Economic Society, vol. 62(1), pages 27-55, June.
  • Handle: RePEc:phs:prejrn:v:62:y:2025:i:1:p:27-55
    as

    Download full text from publisher

    File URL: https://pre.econ.upd.edu.ph/index.php/pre/article/view/1068/1010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    2. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models. I. Time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    3. Gomez Ospina, Monica A., 2023. "Optimal monetary policy in developing countries: The role of informality," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    4. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    5. Mr. Tanai Khiaonarong & David Humphrey, 2019. "Cash Use Across Countries and the Demand for Central Bank Digital Currency," IMF Working Papers 2019/046, International Monetary Fund.
    6. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    7. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    8. Khiaonarong, Tanai & Humphrey, David, 2019. "Cash use across countries and the demand for central bank digital currency," Journal of Payments Strategy & Systems, Henry Stewart Publications, vol. 13(1), pages 32-46, March.
    9. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Bao, 2018. "The asymptotic covariance matrix of the QMLE in ARMA models," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 309-324, April.
    2. repec:esx:essedp:767 is not listed on IDEAS
    3. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    4. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    5. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    6. Tianhao Wang & Yingcun Xia, 2015. "Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1083-1099, September.
    7. Robinson, Peter M., 2011. "Inference on power law spatial trends (Running Title: Power Law Trends)," LSE Research Online Documents on Economics 58100, London School of Economics and Political Science, LSE Library.
    8. Zihan Wang & Xinghao Qiao & Dong Li & Howell Tong, 2025. "On a new robust method of inference for general time series models," Papers 2503.08655, arXiv.org.
    9. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.
    10. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    11. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    12. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    13. Dimitriou-Fakalou, Chrysoula, 2019. "On accepting the edge-effect (for the inference of ARMA-type processes in Z2)," Econometrics and Statistics, Elsevier, vol. 10(C), pages 53-70.
    14. Sheena Yu-Hsien Kao & Anil K. Bera, 2018. "Testing spatial regression models under nonregular conditions," Empirical Economics, Springer, vol. 55(1), pages 85-111, August.
    15. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    16. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    17. Yang, Yaxing & Ling, Shiqing & Wang, Qiying, 2022. "Consistency of global LSE for MA(1) models," Statistics & Probability Letters, Elsevier, vol. 182(C).
    18. Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
    19. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    20. Peter M Robinson, 2011. "Inference on Power Law Spatial Trends (Running Title: Power Law Trends)," STICERD - Econometrics Paper Series 556, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    21. Huang, Lei & Jiang, Hui & Wang, Huixia, 2019. "A novel partial-linear single-index model for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 110-122.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • E41 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Demand for Money
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:phs:prejrn:v:62:y:2025:i:1:p:27-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HR Rabe (email available below). General contact details of provider: https://edirc.repec.org/data/seupdph.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.