IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v37y2018i4p309-324.html
   My bibliography  Save this article

The asymptotic covariance matrix of the QMLE in ARMA models

Author

Listed:
  • Yong Bao

Abstract

A compact analytical representation of the asymptotic covariance matrix, in terms of model parameters directly, of the quasi maximum likelihood estimator (QMLE) is derived in autoregressive moving average (ARMA) models with possible nonzero means and non-Gaussian error terms. For model parameters excluding the error variance, it is found that the Huber (1967) sandwich form for the asymptotic covariance matrix degenerates into the inverse of the associated information matrix. In comparison to the existing result that involves the second moments of some auxiliary variables for the case of zero-mean ARMA models, the analytical asymptotic covariance in this article has an advantage in that it can be conveniently estimated by plugging in the estimated model parameters directly.

Suggested Citation

  • Yong Bao, 2018. "The asymptotic covariance matrix of the QMLE in ARMA models," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 309-324, April.
  • Handle: RePEc:taf:emetrv:v:37:y:2018:i:4:p:309-324
    DOI: 10.1080/07474938.2016.1140287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2016.1140287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2016.1140287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    3. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    4. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models. I. Time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    5. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    6. Hannan, E. J. & Dunsmuir, W. T. M. & Deistler, M., 1980. "Estimation of vector ARMAX models," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 275-295, September.
    7. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2019. "A General Framework for Prediction in Time Series Models," Papers 1902.01622, arXiv.org.
    2. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    2. Mélard, Guy, 2022. "An indirect proof for the asymptotic properties of VARMA model estimators," Econometrics and Statistics, Elsevier, vol. 21(C), pages 96-111.
    3. repec:esx:essedp:767 is not listed on IDEAS
    4. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    5. Tianhao Wang & Yingcun Xia, 2015. "Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1083-1099, September.
    6. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    7. Dimitriou-Fakalou, Chrysoula, 2019. "On accepting the edge-effect (for the inference of ARMA-type processes in Z2)," Econometrics and Statistics, Elsevier, vol. 10(C), pages 53-70.
    8. Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
    9. Guy Melard, 2020. "An Indirect Proof for the Asymptotic Properties of VARMA Model Estimators," Working Papers ECARES 2020-10, ULB -- Universite Libre de Bruxelles.
    10. Moon, Seongman & Velasco, Carlos, 2013. "Tests for m-dependence based on sample splitting methods," Journal of Econometrics, Elsevier, vol. 173(2), pages 143-159.
    11. Huang, Lei & Jiang, Hui & Wang, Huixia, 2019. "A novel partial-linear single-index model for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 110-122.
    12. Dimitriou-Fakalou, Chrysoula, 2009. "Modified Gaussian likelihood estimators for ARMA models on," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4149-4175, December.
    13. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    14. Angela Ferretti & L. Ippoliti & P. Valentini & R. J. Bhansali, 2023. "Long memory conditional random fields on regular lattices," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    15. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    16. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    17. Robinson, Peter M., 2011. "Inference on power law spatial trends (Running Title: Power Law Trends)," LSE Research Online Documents on Economics 58100, London School of Economics and Political Science, LSE Library.
    18. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.
    19. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    20. Sheena Yu-Hsien Kao & Anil K. Bera, 2018. "Testing spatial regression models under nonregular conditions," Empirical Economics, Springer, vol. 55(1), pages 85-111, August.
    21. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:37:y:2018:i:4:p:309-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.