IDEAS home Printed from https://ideas.repec.org/a/pfi/pubfin/v53y1998i3-4p285-95.html
   My bibliography  Save this article

An Axiomatic Proof of Mirrlees' Formula

Author

Listed:
  • Homburg, Stefan

Abstract

Mirrlees' optimal income tax formula has never been proven rigorously, and it is hard to understand it in economic terms. We prove an analogous formula for an economy with finitely many persons. This is easy and allows a simple economic interpretation. Thereafter, Mirrlees' original formula is derived by means of a limit theorem. The analysis also clarifies the discussion between Revesz and Saez published as "Communications" below in this issue of PF/FP. It shows which formula is correct and how the methodological problems, in particular the circularity problem, can be dealt with.

Suggested Citation

  • Homburg, Stefan, 1998. "An Axiomatic Proof of Mirrlees' Formula," Public Finance = Finances publiques, , vol. 53(3-4), pages 285-295.
  • Handle: RePEc:pfi:pubfin:v:53:y:1998:i:3-4:p:285-95
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesus Seade, 1982. "On the Sign of the Optimum Marginal Income Tax," Review of Economic Studies, Oxford University Press, vol. 49(4), pages 637-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schock, Matthias Malte, 2019. "Steuerreformvorschläge des Mirrlees Committee und der Stiftung Marktwirtschaft [Tax Reform Proposals of the Mirrlees Committee and the Stiftung Marktwirtschaft]," MPRA Paper 96689, University Library of Munich, Germany.
    2. Lohse, Tim & Lutz, Peter F. & Thomann, Christian, 2011. "Investments in the Human Capital of the Socially Disadvantaged Children - Effects on Redistribution," Hannover Economic Papers (HEP) dp-484, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Lohse Tim, 2014. "The Objections against Workfare Revised," Review of Economics, De Gruyter, vol. 65(1), pages 95-118, April.
    4. Revesz, John T, 1998. "Some Comments on the Reply by Saez and the Article by Homburg [Comparing Elasticities-Based Optimal Income Tax Formulas] [An Axiomatic Proof of Mirrlees' Formula]," Public Finance = Finances publiques, , vol. 53(3-4), pages 486-488.
    5. Homburg Stefan & Lohse Tim, 2005. "Optimal Taxes and Transfers under Partial Information," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 622-629, December.
    6. Homburg, Stefan, 2010. "Allgemeine Steuerlehre: Kapitel 1. Grundbegriffe der Steuerlehre," EconStor Books, ZBW - Leibniz Information Centre for Economics, number 92547, November.
    7. Tim Lohse & Peter Lutz & Christian Thomann, 2013. "Redistributional consequences of early childhood intervention," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(3), pages 373-381, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berliant, Marcus & Fujishima, Shota, 2012. "Optimal dynamic nonlinear income taxes: facing an uncertain future with a sluggish government," MPRA Paper 41947, University Library of Munich, Germany.
    2. repec:ebl:ecbull:v:8:y:2006:i:2:p:1-6 is not listed on IDEAS
    3. Laurence Jacquet & Etienne lehmann & Bruno Van Der Linden, 2012. "Signing distortions in optimal tax or other adverse selection models with random participation," THEMA Working Papers 2012-27, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Alessandro Balestrino & Alessandro Cigno & Anna Pettini, 2002. "Endogenous Fertility and the Design of Family Taxation," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 9(2), pages 175-193, March.
    5. Carbonell-Nicolau, Oriol & Llavador, Humberto, 2018. "Inequality reducing properties of progressive income tax schedules: the case of endogenous income," Theoretical Economics, Econometric Society, vol. 13(1), January.
    6. Martin Hellwig, 2004. "Optimal Income Taxation, Public-Goods Provision and Public-Sector Pricing: A Contribution to the Foundations of Public Economics," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2004_14, Max Planck Institute for Research on Collective Goods.
    7. Jacquet, Laurence & Lehmann, Etienne & Van der Linden, Bruno, 2013. "Optimal redistributive taxation with both extensive and intensive responses," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1770-1805.
    8. Ruiz del Portal, X., 2010. "On the qualitative properties of the optimal income tax," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 288-298, May.
    9. Aronsson, Thomas & Micheletto, Luca, 2017. "Optimal Redistributive Income Taxation and Efficiency Wages," Umeå Economic Studies 953, Umeå University, Department of Economics.
    10. Johann K. Brunner & Susanne Pech, 2008. "Optimum taxation of inheritances," Economics working papers 2008-06, Department of Economics, Johannes Kepler University Linz, Austria.
    11. Hellwig, Martin F., 2007. "A contribution to the theory of optimal utilitarian income taxation," Journal of Public Economics, Elsevier, vol. 91(7-8), pages 1449-1477, August.
    12. Johann K. Brunner & Susanne Pech, 2012. "Optimal Taxation of Bequests in a Model with Initial Wealth," Scandinavian Journal of Economics, Wiley Blackwell, vol. 114(4), pages 1368-1392, December.
    13. Marcus Berliant & Shota Fujishima, 2017. "Optimal income taxation with a stationarity constraint in a dynamic stochastic economy," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 19(3), pages 739-747, June.
    14. Ruiz del Portal, X., 2008. "Is the optimal income tax regressive?," Economics Letters, Elsevier, vol. 100(3), pages 402-404, September.
    15. Cyril Hariton & Gwenaël Piaser, 2007. "When Redistribution Leads to Regressive Taxation," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 589-606, August.
    16. Emmanuel Farhi & Iván Werning, 2010. "Progressive Estate Taxation," The Quarterly Journal of Economics, Oxford University Press, vol. 125(2), pages 635-673.
    17. Florian Hoffmann & Roman Inderst & Ulf Moslener, 2017. "Taxing Externalities Under Financing Constraints," Economic Journal, Royal Economic Society, vol. 127(606), pages 2478-2503, November.
    18. Emmanuel Saez, 2001. "Using Elasticities to Derive Optimal Income Tax Rates," Review of Economic Studies, Oxford University Press, vol. 68(1), pages 205-229.
    19. Saez, Emmanuel, 2002. "The desirability of commodity taxation under non-linear income taxation and heterogeneous tastes," Journal of Public Economics, Elsevier, vol. 83(2), pages 217-230, February.
    20. Louis Kaplow, 2007. "Optimal income transfers," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 14(3), pages 295-325, June.
    21. Oriol Carbonell-Nicolau & Humberto Llavador, 2019. "Inequality, Bipolarization, and Tax Progressivity," Working Papers 1071, Barcelona Graduate School of Economics.

    More about this item

    JEL classification:

    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pfi:pubfin:v:53:y:1998:i:3-4:p:285-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.